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Abstract—Secure “pairing” of wireless devices based on aux-
iliary or out-of-band (OOB) – audio, visual or tactile – com-
munication is a well-established research direction. Specifically,
authenticated as well as secret OOB (AS-OOB) channels have
been shown to be quite useful for this purpose. Pairing can be
achieved by simply transmitting the key or short password over
the AS-OOB channel, avoiding potential serious human errors.

This paper analyzes the security of AS-OOB pairing. Specif-
ically, we take a closer look at three notable prior AS-OOB
pairing proposals and challenge the assumptions upon which the
security of these proposals relies, i.e., the secrecy of underlying
audio channels. The first proposal (IMD Pairing) uses a low
frequency audio channel to pair an implanted RFID tag with
an external reader. The second proposal (PIN-Vibra) uses an
automated vibrational channel to pair a mobile phone with a
personal RFID tag. The third proposal (BEDA) uses vibration
(or blinking) on one device and manually synchronized button
pressing on another device or simultaneous button pressing on
two devices. We demonstrate the feasibility of eavesdropping over
acoustic emanations associated with these methods and conclude
that they provide a weaker level of security than was originally
assumed or desired for the pairing operation.

Index Terms—Device Pairing, Authentication, Audio Emana-
tions, Signal Processing

I. INTRODUCTION

Short- and medium-range wireless communication – based
on technologies such as Bluetooth, WiFi and RFID (Radio
Frequency Identification) – is becoming increasingly popu-
lar. This surge in popularity, however, brings about various
security risks. The Wireless communication channel is easy
to eavesdrop upon and to manipulate, and therefore a fun-
damental security objective is to secure this communication
channel. In this paper, we will use the term “pairing” to
refer to the operation of bootstrapping secure communication
between two wireless devices, resistant against eavesdropping
and man-in-the-middle attacks. Examples of pairing include
pairing of a WiFi laptop and an access point, a Bluetooth
keyboard and a desktop, an RFID tag and reader. Pairing would
be easy to achieve, if there existed a global infrastructure
enabling devices to share an on- or off-line trusted third party,
a certification authority, a PKI or any pre-configured secrets.
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However, such a global infrastructure may not be possible in
practice, making pairing a challenging research problem.

A promising and well-established research direction to
pairing is to leverage an auxiliary channel, also called an
out-of-band (OOB) channel, which is governed by the users
operating the devices. Examples of OOB channels include
audio, visual, and tactile channels. Unlike the radio com-
munication channels, OOB channels are “human-perceptible”,
i.e., the underlying transmission/reception can be perceived
by one or more of human senses. Due to this property, OOB
communication naturally provides (source) authentication and
integrity, unlike radio communication. In other words, a user
can validate the intended source of an OOB message and an
adversary can not manipulate the OOB messages in transit
(although he can eavesdrop). We refer to such an authenticated
OOB communication as A-OOB.

Using these protocols, a wide-variety of pairing methods –
based on visual, audio, tactile and infra-red – A-OOB channels
have been proposed. We refer the reader to an exhaustive
survey and comparative analysis of various A-OOB pairing
methods [14].

The focus of this paper is on pairing constrained devices.
We define a constrained device as a device that lacks good
quality output interfaces (e.g, a speaker, display), input inter-
faces (e.g., keypads), or receivers (e.g., microphone, camera),
and may not be physically accessible. Examples of constrained
devices include headsets, access points, and medical implants.1

A-OOB pairing of constrained devices can be very com-
plicated due to several reasons (we discuss these in Section
II-A). In general, establishing (bidirectional) automated A-
OOB channels on constrained devices might be quite difficult.
Manual mechanisms for pairing constrained devices can also
be prone to fatal human errors [31] that eventually translate
into man-in-the-middle attacks. A fatal human error is defined
as an error that violates the security goal of the pairing mech-
anism. In particular, this would result in one of the pairing
devices getting paired with a man-in-the-middle attacker’s
device, without the device user knowing about it.

A natural workaround to the aforementioned problems is
to pair devices based on secret as well as authenticated OOB
channels (referred to as AS-OOB). In this model, the adversary
is not only assumed to be incapable of manipulating OOB
communication but also can not eavesdrop upon it. Using
an AS-OOB channel, pairing can be achieved simply by
transmitting – from one device to the other – the key over this

1Due to economic reasons, such devices may also be constrained in terms
of computational resources (e.g., low-cost RFID tags).



channel, avoiding any potential fatal human errors and without
having to perform any cryptography. If this channel is low-
bandwidth, a short PIN or password can be transferred instead
and a password-based authenticated key agreement (PAKA)
protocol [5], [9] can be executed to achieve pairing. Several
prior proposals, including [11], [24], [27], [28] (reviewed
below), have taken this approach to pairing.

A. Motivation: Security of AS-OOB Pairing

In this work, we set out to investigate the security of pairing
based on AS-OOB. More specifically, we take a closer look at
three notable prior AS-OOB pairing proposals (summarized as
follows) and challenge the direct or indirect assumption upon
which the security of these proposals relies, i.e., the secrecy
of underlying or associated audio channels. (We describe the
methods in detail in section II-B.)

• IMD Pairing: This method [11] uses a low-frequency
audio channel to pair an RFID tag – attached to an IMD
(Implanted Medical Device) – with an authorized reader
or programmer. Basically, the tag generates a random
key and broadcasts it to the reader which listens to it
from a close distance (e.g., a microphone is placed in
close proximity to the patient’s chest in case of a cardiac
implant).

• PIN-Vibra: This method (also referred to as “Vibrate-
to-Unlock”) [24], [25] uses an automated vibrational
channel to pair a personal RFID tag with a mobile
phone. The phone generates a PIN and transmits it to
(an accelerometer-equipped) tag through its vibrations,
while the user presses the phone against the tag. The
same channel is later used by the phone to authenticate
to (or activate) the tag.

• BEDA: This method (Button-Enabled Device Associa-
tion) [27], [28] involves one device encoding a short pass-
word into vibrations (or blinking of an LED), which is
transmitted to the other device by manually synchronized
button pressing. Another variant of this method involves
a user pressing buttons simultaneously on two devices.
The presses and releases of the buttons generate a short
password shared by both devices. We refer to the variant
that uses vibration as Vibrate-Button, the one that uses
blinking as Blink-Button and the third variant as Button-
Button.

B. Overview of Contributions

We investigate acoustic eavesdropping attacks on pairing
applications geared for constrained devices, including IMD
pairing (which uses direct acoustic signals), and PIN-Vibra
and BEDA (in which the acoustic signals are a by-product
of the vibration/button clicking). To our knowledge, such
attacks have not been considered in past research (prior to
the conference version of this paper [10]). We also study
eavesdropping in a realistic setting (from distances up to a
few feet away) and compare the results from different dis-
tances using very inexpensive equipment (a PC microphone).
Previous research on keyboard and printer acoustic emanations
(discussed in Section II-C) concentrated on recordings from

a single very close by distance or used special equipment
(parabolic microphone) for farther recordings.

We start with IMD pairing, which is set to exchange the
key using a relatively low-volume IMD device and is meant
to perform the key exchange with an external reader from very
close by. As reported in [11], the security of IMD pairing is
based on the fact that the sound generated is hard to hear
from a distance and is too low to be measured. We examine
a realistic setup of eavesdropping from 2-3 ft distance (and
farther using a parabolic microphone). This may allow an
attacker to, for example, place a microphone next to a PC
or other equipment in a medical examination room (and a
parabolic microphone at a farther distance). We demonstrate
the feasibility of eavesdropping directly over the audio trans-
missions of a piezo element attached to an implanted RFID.
We show that the key can be sniffed upon beyond the standard
operating parameters of this set-up, i.e., from a farther distance
from a beeping piezo.

We then examine the PIN-Vibra and BEDA schemes, and
show that even though the acoustic emanations are only a
by-product of the phone vibrations and the phone key-press,
they can be utilized to successfully recover the exchanged
short secret. Specifically, for PIN-Vibra, we consider acoustic
emanations associated with a vibrating phone. We show that
the PIN can be eavesdropped upon even beyond the standard
mechanism used by the tag, i.e., without sensing the vibrations
using an accelerometer, and beyond the standard operating
parameters of this set-up, i.e., from a farther distance from
the phone.

For BEDA Vibrate-Button, we again consider acoustic em-
anations associated with a vibrating phone, and for BEDA
Blink-Button and Button-Button, we consider acoustic ema-
nations of button pressings. Similar to PIN-Vibra, we demon-
strate that BEDA password can be learned beyond the standard
mechanism used by this set-up, i.e., without manual sensing
of vibrations as in Vibrate-Button and without observing the
blinking as in Blink-Button and Button-Button, as well as
beyond the standard operating distance in Vibrate-Button.

Based on our results, we conclude that all three approaches
provide a weaker level of security compared to what was
originally assumed or is desired for the pairing operation.

To the best of the authors’ knowledge, this paper explores
acoustic emanations in the context of the device pairing appli-
cation. Since pairing is a fundamental security procedure upon
which the security of all subsequent communication between
the devices rely, we believe it is important to ascertain to what
extent acoustic emanations may undermine the security of pair-
ing. We also remark that the problem we consider in this paper
is more challenging than the one considered in [2], [32] (we
discuss these in Section II-C). This is predominantly because
of the fact that the acoustic emanations in our applications
are much more feeble. For example, the piezo transmissions
coming from inside of a human body in IMD Pairing are
severely dampened; similarly, cell phone vibrations and button
pressing on mobile devices (such as phones) in PIN-Vibra and
BEDA are not as prominent as pressing keys on traditional PC
keyboards.
Organization: The rest of this paper is organized as follows.



In Section II, we cover background and prior work. In Section
III, we describe the threat model employed in our work.
In Section IV, we give an overview of our experimental
setup and techniques. In sections V, VI and VII, we present
our audio eavesdropping attacks on IMD Pairing, PIN-Vibra
and BEDA, respectively. Finally, in Section VIII, we discuss
the implications of our attacks on the security of the three
schemes.

II. BACKGROUND AND PRIOR WORK

A. A-OOB Pairing of Constrained Devices

A-OOB pairing of constrained wireless devices has a
number of complications. Several prior pairing methods are
based on bidirectional automated device-to-device (d2d) A-
OOB channels (e.g., [29], [4], [16]). Such d2d channels
require both devices to have transmitters and corresponding
receivers (e.g., Infra-Red transceivers), which may not exist on
constrained devices. In settings where d2d channel(s) do not
exist (i.e., when at least one device does not have a receiver),
pairing methods can be based upon device-to-human (d2h)
and human-to-device (h2d) channel(s) instead (e.g., based on
transfer of numbers [31]). However, establishing such channels
on constrained devices may also not be feasible.

One remedy to the above problem is to use only unidirec-
tional communication (from device A to B), but have the user
transfer the result of pairing shown on B over to A, as shown
in [22]. This, however, may lead to a critical security failure –
a user may accept the pairing on A even though B indicates
otherwise, as shown via a recent usability study in [14]. (This
is referred to as a fatal human error [14] which translates into
a man-in-the-middle attack).

Another possible approach is based on manual compari-
son of audiovisual OOB strings over synchronized device-to-
human (d2h) channels, as shown in [17], [20]. This would
only require the two devices to be equipped with low-cost
transmitters, such as LED(s) (and two buttons). However, the
security of these approaches rely upon the decision made by
the user and is prone to fatal human errors, as demonstrated in
[14]. Even worse, a rushing user [23]2 may simply “accept”
the pairing, without having to correctly take part in the
decision process.

B. AS-OOB Pairing Methods

IMD Pairing: Wireless implantable medical devices, such
as pacemakers and Implantable Cardiac Defibrillators (ICD),
have recently been shown [11] to be vulnerable to a wide va-
riety of serious attacks, ranging from eavesdropping of patient
sensitive information to modification of stored information and
therapies, and denial-of-service. In [11], the authors suggested
zero-power defenses, whereby a passive (and thus zero-power)
RFID device is attached to the IMD. A pre-requisite to achiev-
ing authenticated and confidential communication between an
IMD and external reader is key agreement, i.e., pairing, which
would allow the IMD to establish a shared secret key with the
reader on-the-fly.

2A rushing user is a user who – in a rush to connect her devices – would
skip through the pairing process, if possible [23].

A-OOB pairing of an IMD would be problematic because
IMD is inherently a constrained device. Since an IMD would
be inside a human body, establishing visual channels is not
possible. Providing tactile inputs to implanted devices may
also not be feasible because of lack of physical access. Due
to low-cost and zero-power requirements, establishing bidi-
rectional d2d OOB channels may not be possible. Moreover,
computational constraints might prevent a low-cost RFID from
performing public-key cryptographic computations involved
in A-OOB pairing and limit the use of distance bounding
techniques [19].

The pairing approach proposed in [11] is based on an audio
AS-OOB channel. Basically, the RFID device attached to the
IMD is connected with a piezo element, which simply picks
a random key and transmits it over a low-frequency audio
channel; this key is recorded and decoded by a microphone
attached to the reader near the human body. The experiments
presented in [11] seem to indicate that the underlying audio
channel is resistant to eavesdropping. In particular, it was
shown that transmission of the key was easy to feel with
the hand in close contact with the human chest enclosing a
cardiac implant (using meat to simulate human chest), but
was difficult to hear from a farther distance. In this paper, we
set out to further investigate this claim regarding the secrecy
of IMD Pairing and demonstrate the feasibility of acoustic
eavesdropping even from a distance.
PIN-Vibra: Personal (passive) RFID tags (found, e.g., in ac-
cess cards, e-passports and licenses) are increasingly becoming
ubiquitous. Similar to other personal devices, personal RFID
tags often store valuable information privy to their users, and
are likely to get lost or stolen. However, unlike other personal
wireless devices, such information can be easily subject to
eavesdropping, relay attacks and unauthorized “reading”, and
can lead to owner tracking.

User authentication to an RFID device would allow a user
to control when and where her RFID tag can be accessed
and thus help solve some of the aforementioned problems. A
fundamental road-block in developing an RFID user authenti-
cation mechanism is the lack of any input or output interfaces
on RFID tags (RFID devices were not meant to interact with
their users) and a somewhat atypical usage model (users often
place RFID tags in their wallets and might not be in direct
contact with them).

In [24], the authors present PIN-Vibra, a novel approach for
user authentication to RFID tags. PIN-Vibra leverages a per-
vasive device such as a personal mobile phone, motivated by
its ubiquity. It uses the mobile phone as an authentication to-
ken, forming a unidirectional AS-OOB tactile communication
channel between the user and her (accelerometer-equipped)
RFID tags. Pairing of (and later authenticating to) an RFID
tag requires the user to touch her vibrating phone with the tag
(or wallet carrying the tag); the phone encodes a short PIN
into vibrations which are read by the tag’s accelerometer and
decoded.

The security of PIN-Vibra relies on the secrecy of the
underlying vibrational channel, i.e., an adversary who is not
in close physical contact with the phone should not be able
to learn the transmitted PIN. We investigate the feasibility of



eavesdropping the PIN-Vibra vibrational channel and demon-
strate how acoustic emanations from a vibrating mobile phone
can be eavesdropped upon from a short distance.
BEDA: BEDA [27] suggests pairing devices with the help
of manual button pressing, thus utilizing the tactile AS-OOB
channel. This method is based on a password-authenticated
key exchange protocol [9], and has three variants we study
in this work: “Vibrate-Button”, “Blink-Button” and “Button-
Button”.

BEDA is geared for devices with constrained interfaces; one
device needs a vibration capability or an LED, while the other
needs only a button. In the first two BEDA variants, the send-
ing device vibrates (or blinks its LED) and the user presses a
button on the receiving device. The short password is encoded
as the delay between consecutive vibrations (or blinks). As the
sending device vibrates (or blinks), the user synchronously
presses the button on the other device thereby transmitting
the password from one device to another. The third variant of
BEDA belongs to a different class of pairing approach – one
where randomness is derived via user inputs. In this method,
the user enters the password into both devices by clicking a
button on each device simultaneously. As argued in [27], the
password input using synchronized button pressing exhibits a
uniform distribution (i.e., fully random passwords which span
the full n digit vector space, where n being the length of the
password). This makes this scheme more appealing, even for
devices which are not constrained, compared to traditional PIN
or passwords which do not follow a uniform distribution and
are prone to small-space dictionary attacks.

The security of BEDA is clearly based on the secrecy of the
password which is being transmitted via vibration (or blinking)
on one device and synchronized button-pressing on the other
device or the secrecy of button-pressing on both devices. We
show, in this paper, that the three BEDA variants are subject
to acoustic eavesdropping. More precisely, we demonstrate
that Vibrate-Button is susceptible to acoustic eavesdropping
of phone vibrations, and Blink-Button and Button-Button
methods are susceptible to acoustic eavesdropping of button-
pressing.

C. Acoustic Emanations

Prior work has considered the problem of eavesdropping
over acoustic emanations as a side channel. Asonov and
Agrawal [2] were the first to investigate the feasibility of
eavesdropping over acoustic emanations associated with typing
on computer keyboards. They demonstrated that pressing each
key on a keyboard produces a unique sound using which an
eavesdropper can learn the characters typed by a user. The
authors used signal processing techniques, machine learning
classifiers and an off-the-shelf PC microphone for eavesdrop-
ping from a distance of up to 1 meter.

Zhuang et al. [32] examined the same problem and im-
proved upon the work of [2]. In particular, they showed that
using Mel Frequency Cepstrum Coefficients (MFCC) features
[18] yield better classification accuracies compared to the Fast
Fourier Transform (FFT) features used in [2].

In a proof-of-concept work published on the web [26],
Shamir and Tromer explore inferring of CPU activities (e.g.,

patterns of CPU operations and memory access) via acoustic
emanations and how they can be used to learn RSA private
key.

Acoustic emanations were also utilized for eavesdropping
on dot matrix printers. In [6], Briol showed that significant
information can be extracted about the printed text, using
acoustic emanations to distinguish between the letters ‘W’ and
‘J’. In [3], Backes et al. presented an attack which recovers
English printed text from the printer audio sounds, using
dictionary and language-based models attack.

III. THREAT MODEL

The threat model employed in our work, and in the work on
which this paper is based (i.e., IMD Pairing [11], PIN-Vibra
[24] and BEDA [27]), follow the “open design” principle,
which is a well accepted approach in cryptography in general
and key agreement in particular. In this case, the algorithms
and the associated parameters (such as the bit length and the
beginning sequence values) of the code are publicly known to
everyone (including the devices being paired as well as any
attacker). The attacker’s goal will be to violate the security of
the system based on the knowledge of these algorithms and
parameters. We note that, in the case of pairing, the assumption
is that the parties do not share any “secrets” in advance
(since they do not have any prior context with each other);
establishing such secrets is the goal for pairing. Only thing
that the parties share are the algorithms and public parameters.
Thus, the “closed design” will not work in this setting.

The need for following the above threat model can be further
illustrated taking the example of Implantable Medical Devices
(IMD). In this case, it is imperative that any valid reader
will be able to work with any IMD (e.g., in an emergency
situation where the two devices may be complete strangers to
each other). Therefore, to be able to exchange the secret keys,
both the reader and the IMD need to know in advance the
parameters of the code.

Eavesdropping Attacks: Execution of eavesdropping attacks
from different distances can be achieved, for example, by
hiding a (remotely controlled) wireless microphone near a
user’s workspace and hoping that the user pairs his/her devices
(e.g,, a phone and headset). Another possibility may be when
a device suffers a software compromise. For example, in a
recent attack, researchers at McAfee [1] managed to activate
remotely microphones in a variety of test devices. This shows
the threat of eavesdropping is growing due to the fact that
microphones are becoming ubiquitous in many devices.

IV. OVERVIEW OF OUR ATTACKS

In the following sections, we demonstrate the feasibility of
acoustic eavesdropping on IMD Pairing, PIN-Vibra and BEDA
Vibrate-Button, Blink-Button and Button-Button schemes. We
implemented (or used existing prototypes) for each of these
methods and recorded the resulting audio signals. We then
used signal processing algorithms and, if needed, machine
learning classifiers to detect the beginning of signals and
decode the transmitted secret (key or a short PIN/password).



In the first two schemes (IMD Pairing and PIN-Vibra), the
secret is transmitted as a binary code. The code includes a
beginning sequence that helps the receiver (honest decoder)
detect the beginning of the key. In the original IMD defense
[11], the authors do not specify how the beginning of the secret
key is detected. However, detecting the sequence beginning
is an essential step for the (authentic) decoder to allow for
proper decoding. Adding a beginning sequence is a well-
known approach in coding that facilitates a (valid) decoder to
detect the signal beginning. An alternative is to add a different
frequency to mark the beginning. However, this would be
harder to implement with a piezo (a very simple device) and
would require changing the original scheme of the IMD paper
(which used 2-FSK encoding). For PIN-Vibra, the beginning
sequence was included in the original proposal.

We attempt to eavesdrop over the key in two phases: first,
we detect the beginning sequence in the key using signal
processing algorithms. Then, we extract spectrum features
from each consecutive bit and use these features as input to
machine learning algorithms that classify each bit value.

The Vibrate-Button, Blink-Button and Button-Button meth-
ods differ from the first two in that there is no beginning
sequence or a constant bit size in the signal. For these methods,
we detect each event (vibration or key press) using signal
processing techniques and calculate the key from the time
differences between the events.

We note that we did not have any control over the piezo beep
volume. Similarly, the phone vibration (as well as the phone
key press) volume could not be controlled and is a function
of the system. Therefore, the volume was not a parameter of
our tests but was a result of the systems’ default design.

Our experimental set-up, for the three schemes, consisted
of the following common components:

− PC Microphone: We used a $20 commodity PC micro-
phone (Logitech model 981-000246).

− Software and System: We used the Windows sound
recorder (with sampling rate of 22.05 kHz) and the Matlab
software for all signal processing and decoding, on an IBM
Thinkpad X60 laptop.

V. EAVESDROPPING IMD PAIRING

A. Eavesdropping Challenges and Goals

There are two prior research projects that relate to our
work on IMD eavesdropping. The first project [2], [32],
(Section II-C) involves eavesdropping over keyboard acoustic
emanations. Here, the keyboard audio signals were found to
be at least 100 ms apart. This enabled detecting the beginning
of each key using spectrum analysis and extracting its signal
prior to its classification.

The second project [15] explored device-to-device proximity
communications using audible sound. The proposed audio
codec uses Amplitude Shift Keying (ASK) and Frequency
Shift Keying (FSK) modulation techniques to transmit infor-
mation between two devices. A specific ‘hail’ frequency is sent
at the beginning of the message which signals the receiver to
start decoding. This work does not consider an adversarial
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Fig. 1: Piezo Audio Signals

setting, and the communicating parties are assumed to be
honest and very close by.

One of the main challenges in our work is the fact that,
unlike a modem, a piezo can not be programmed to send a spe-
cific frequency. Rather, the piezo acts as an electric capacitor
which contracts and expands as the voltage across it fluctuates.
Since IMD Pairing suggests 2-FSK decoding [11], the main
problem in eavesdropping this set-up is differentiating between
the two resulting frequency ranges of the piezo vibrations used
to transmit the key.

In addition, since 2-FSK decoding utilizes only two fre-
quencies, the protocol does not allow the use of a ‘hail’ signal
(unlike the codec application, which is a protocol implemented
on a computer or devices that can generate many frequencies
[15]). This limits the piezo output to two frequencies that
mark each bit value as ‘0’ or ‘1’. Instead, we use a beginning
sequence of “01111110” to mark the beginning of the key. In
addition, adding a ‘hail’ frequency would require the piezo,
which is a simple device, to generate yet another distinctive
frequency which may not be possible for some piezo devices
(we found that our piezo would not produce one distinctive
frequency but rather only a combination of frequencies which
needed to be detected). Therefore, adding a beginning se-
quence would be possible in any 2-FSK implementation and
would be essential for the valid decoder to detect correctly the
beginning bit.

Furthermore, our symbols are short (67 samples per bit),
and they are consecutive with no interval/delay between them
(unlike the audio signals of keyboard emanations [2], [32]) and
sometimes overlap each other. Therefore, we can not detect
separately the beginning of each bit but rather use a constant
bit length to locate each following bit in the key. Thus, an
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Fig. 2: IMD Setup

inaccurate detection of the start of the first bit will cause a
shift in all consecutive bit locations (from their true locations)
and reduce the decoding rate.

Another issue is that when the piezo is inserted in a human
body (simulated by meat), the sound amplitude further subdues
(see sound level measurements in section IV).

We set out to study the weaknesses of the IMD system.
We found that even though the piezo generates a string of
audio signals that have very low amplitude and which sound
very similar, the system is vulnerable to attacks using signal-
processing based algorithms. We further attempt to show
that even when using a simple off-the-shelf PC microphone
and recording a few feet away (outside of a typical PC
microphone’s optimal recording range), an attacker may still
decode the secret key sent.

B. Set-Up

In addition to the components described in Section IV, we
used PUI Audio piezo model AT-2310-T-LW100-R connected
to a WISP tag [21] (similar to [11]). For distant recording (12
ft), we also used the Educational Insights Sonic Sleuth, model
5200.

We took the following steps for our eavesdropping experi-
ments:

• We encoded a random 144-bit (128-bit key + 8-bit start
& stop sequence “01111110”) binary key with 2-FSK
modulation and a baud rate of 341 bps as indicated in
[11].

• We inserted the piezo within a combination of beef and
bacon to emulate a system inside a human chest exactly as
described in [11]. The meat-bacon combination included
1 cm of bacon on top of 4 cm of 85% lean ground
beef (see Figure 2). The piezo was attached to the WISP
(Figure 3).

Sound Level Measurements: We measured the level of the
piezo sound from different distances and compared it to the
readings reported in [11]. We found the piezo audio measured
67 dB SPL when inserted inside the meat (just outside the
surface of the meat) and 62 dB from a distance of 3 feet. This
was quieter than the piezo described in [11] which measured
84 dB as the piezo buzzing volume just outside the meat
surface and 67 dB SPL from 1 meter away. Therefore, although
our system is using a quieter piezo than the one originally used
in [11] we attempt to show we can eavesdrop upon it.

C. General Approach

Since the piezo is encoded to produce 2-FSK based en-
coding, we started by characterizing the piezo beep spectrum

Fig. 3: Piezo-WISP setup
Fig. 4: The stages involved in the
attack

and tried to detect the “mark” frequencies (binary one) and
the “space” frequencies (binary zero). To do this, we first
took recordings of the piezo in air, examined its spectrum and
detected the main signal characteristics for both binary bits.
Then, we took recordings of the piezo inside meat (simulated
IMD scenario), examined the spectrum and adjusted the new
“characteristic frequencies” according to the updated signals.
Example of the signal (inside meat recorded from 3 ft away)
appears in Figure 1(a).

We perform the full key detection in two steps. We first find
the key beginning sequence using the frequency characteristics
and a specialized procedure that utilizes frequency analysis.
We then decode the key with the help of a machine learning
classifier that uses frequency-based features extracted from the
key bits. The input features are created for each consecutive 3
ms bit in the signal and a classifier is used to decode the each
bit. A full diagram of the attack stages appears in Figure 4.

All of our recordings were taken in a regular office (a
graduate student’s room). The main sources for background
noise were people walking outside the room in the university
corridors.

D. Audio Signal Decoding Algorithm

We started by choosing the proper input for our signal
decoding algorithm. Our original recording was in the time
domain. However, the amplitude of the signal is affected by
background noise, microphone characteristics and the distance
from the microphone. To overcome such amplitude variations
and since the piezo encoding is frequency-based, we trans-
formed our signal into the frequency domain.

Next, we examined the signal to determine the correct
window size for which to create the spectrum. We compared
using the whole bit lengths (shown in Figure 1(b)) against
using only the middle parts of each bit. We found that due to
the short duration of the bit signal (3 ms, 67 samples per bit),
we got the best results when we extracted features from the
whole bit signal.

1) Frequency Characteristics – Recording With and Without
Meat: We first create the bit spectrum of the open-environment
acoustic signal by performing Fast Fourier Transform (FFT)
on each of the bit signals sent by the piezo (using one full bit
duration). We obtained a spectrum with 34 frequency intervals
of 335 Hz each (Figure 5(a)). We observed that the ‘0’ bit
spectrum has two peaks in the 1.67 - 2.68 kHz interval while
the ‘1’ bit has a peak at the 2.68-3.35 kHz interval.
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Fig. 5: Spectrum
We then recorded the piezo beeping inside meat and re-

viewed the changes in the signal. We found that the audio
signal was much more faint and the spectrum was degraded
(Figure 5(b)) which resulted in less noticeable ‘0’ bit peak
frequencies. We note that both bit spectrums contained an
additional peak around the 2.9 kHz frequency band, but it
was more pronounced in the ‘1’ bit spectrum. Therefore, this
frequency is later used to detect the existence of the “mark”
(binary ‘1’) in the key.

2) Valid Bit Detection and Bit Decoding: We detect the
beginning of the piezo beep in the signal using signal-
processing tools. In particular, to determine if a certain signal
region is a potential piezo beep, we examine the signal using a
window size of 67 samples and perform an FFT to produce the
spectrum of each signal region. We then calculate the energy of
the main frequencies intervals (1.67 - 2.68 kHz and 2.68-3.35
kHz). If either of the energies (which are equal to the square
sum of the FFT coefficients during this interval) is above a
certain threshold, we consider this signal a valid piezo beep.
(We set the threshold to be 40% of the energy of the whole
bit.)

To further classify each beep in the beginning sequence to
the correct digital binary bit, we calculate the ratio between
the main piezo frequencies (2.3 kHz / 2.9 kHz FFT values).
We compare the ratio to a threshold (which is set to 0.5 in our
case, as the 2.9 kHz frequency is more pronounced for the ‘1’
bit than the 2.3 kHz frequency is for the ‘0’ bit) and classify
the signal.

3) Start Sequence Detection: We perform the start sequence
detection in three steps: Finding the first potential bit, syn-
chronizing the bit beginning (which is essential for correct
bit decoding) and detecting the rest of the bits in the start
sequence.
Finding first potential bit: To detect a potential key beginning,
we processed bit-length signal regions until a potential valid

bit was found. Then, we reduced the step size to 1 sample and
searched for the first bit in the signal. Since we know that the
first bit in our preamble sequence is the ‘0’ bit we chose the
region with the highest frequencies related to this bit (in the
1.67-2.68 kHz interval).
Bit synchronization: To further perfect our start-bit detection,
we used signal energy analysis when detecting the first bit with
higher energy level (which corresponds to the ‘1’ bit value).
Specifically, we chose a window size of 0.75 ms and a step
size of 1 sample and calculated the signal energy within these
regions. If the energy is higher than a specific threshold, (we
set the threshold to 20% of the energy in the whole 3ms bit)
we mark the first sample in this region as the beginning of the
bit.
Detecting following bits: Since the piezo emits the bits con-
tinuously with no gap/delay between them, we use a constant
window length that starts right at the end of the previous
bit region to extract the signal for each consecutive bit. We
classify each consecutive bit until we locate the start sequence.
It is expected that the start sequence would be the same
for all piezo elements (unlike the key, which is random).
Therefore, the eavesdropper may know its value ahead of time.
Alternatively, the eavesdropper can detect the characteristic
frequencies for the two binary bits and use energy analysis on
the first high-frequency bit to detect its exact bit start.

4) Feature Vectors Generation: For decoding the full key,
we explore the use of machine learning classifiers. To utilize
these classifiers, we create two feature files that can be used
separately: FFT based features and MFCC features. The FFT-
based features are extracted by using a constant bit-size
window of 67 samples for each bit and performing an FFT
on the bit signal. We also create a separate MFCC feature
for each bit. We use a 40-channel filter bank and generate 13
MFCC values for each bit. We use these features as input to
our classifier to distinguish between the ‘0’ and ‘1’ bits.

5) Classifiers: As discussed in Section V-D, each recording
had 144-bit long keys. For each bit, there were 34 FFT features
and 13 MFCC features. The resulting feature vectors are then
used with two different types of classifiers – supervised [13]
and unsupervised [7].
Supervised Classifiers: In a supervised learning method, the
classifier is built based on training data; the target of the
classifier is to predict the output of test data. In the context
of IMD eavesdropping, the adversary may learn the key
corresponding to some of the transmission sessions (e.g., by
using the same transmitting device or a similar setup), create
the training data set and build the classifier. On future sessions,
the adversary can simply sniff upon the audio channel and
decode the key using the classifier.

We labeled each feature vector with corresponding bit
values (‘0’ or ‘1’) and built the training data set using half of
the total recordings. We implemented the classifiers in Matlab.

We calculate the average correctness (%) of the classifier
output from the five recordings as follows:

Average correctness = # of correct bits
# of bits transmitted × 100%

The decoding result of supervised learning algorithms for
both FFT and MFCC features (for 3 feet distance between



microphone and piezo) are depicted in table I.
The results show that MFCC features always performed

better than FFT features, which is also in line with the findings
of [32]. Most methods yielded an accuracy of 99-100% for
MFCC features. The Linear Classifier had the highest accuracy
for the FFT features, resulting in 97.34%. This suggests the
feature vectors location in the space can be separated with
a hyper-plane which divides the space accurately. For more
details, please refer to the conference version of this paper
[10].

We speculate that the reason that MFCC features provide
better results relative to FFT features is that MFCC use the
Mel Scale [30] of frequencies. In this scale, the contribution
of the lower frequencies is maximized relatively to the higher
frequencies. Since the frequencies of interest in our case lie
in the 0-3 kHz range, their contribution is maximized which
will improve classification.
Unsupervised Classifiers: Unsupervised classifiers can be used
in situations where training data is not available or possible
to generate. Since the bits are binary, the classifiers divide
the test data into two clusters (‘0’ or ‘1’) and each cluster is
assigned a label. Therefore, in the IMD eavesdropping setting,
the adversary may decode the key using the unsupervised
clustering methods (without previously labeled training data).
We used KMeans, Expectation-Maximization (EM), Farthest
First (FF), and Make Density Based (MDB) clustering al-
gorithms implemented in Weka [8]. A total of 5 recordings
were used to calculate the accuracy of each of the clustering
algorithms. The results of unsupervised learning algorithms are
depicted in Table I. They show that MFCC features have better
performance than FFT features, similar to our results using
supervised learning. For FFT features, EM performs better
than other clustering algorithms, providing 97.8 % accuracy.
For MFCC features, all methods provide good results (99%-
100% correct detection).

6) Effect of Distance: We experimented with IMD eaves-
dropping using a PC microphone from different reasonable
distances between the piezo and microphone. We took 10
recordings for each of the 8 distances – close by (less than
1 foot), 1-2 feet, 3 feet and 4-6 feet. Half of the recordings
were used for building training data set when using supervised
learning algorithms and the rest of the recordings were used
for testing both supervised and unsupervised algorithms.

Overall, supervised classifiers seem to have better perfor-
mance up to 4 feet distances (> 90% correctness). However,
there is high degradation of correctness between 5-6 feet,
which prompts us to consider a parabolic microphone. (The
full results appear in [10]).

E. Eavesdropping Using Parabolic Microphone

We further investigated if our techniques will work even
from farther distances (up to 12 ft). Since parabolic micro-
phones are currently widely available and have become less
expensive (we used a $28 microphone which is sold in toy
stores), we believe this is a realistic threat that may increase
the vulnerability of IMD Pairing. We further explored the
vulnerability of the system to an eavesdropping attack using
only signal processing methods (without utilizing classifiers).

To this end, we took recordings using a parabolic microphone
with the same setup (piezo beeping inside meat) from a few
distances up to 12 feet. We examined the signal spectrum and
found that while the lower frequencies got blurred, we were
able to use the spectrum in the higher frequencies band (6.5
kHz - 7.5 kHz) instead for detecting the ‘1’ bit accurately. We
created a curve with the sum of the frequencies in this interval
and threshold it (we set the threshold to 0.5 of the maximum
value of that curve over the key recording) to detect the ‘1’
bits. We found that even at 12 feet, we were able to distinguish
between the ‘0’ and ‘1’ bits with a probability of over 80%.
This emphasizes the vulnerability of IMD Pairing from farther
distances.

VI. EAVESDROPPING PIN-VIBRA
A. PIN-Vibra Encoding

In our eavesdropping experiments, we used the original
prototype implementation of the PIN-Vibra method [24]. For
encoding a PIN into vibrations, a simple time interval based
ON-OFF encoding was employed that used a four-digit PIN
which is equivalent to 14 bits of binary data. Three additional
bits (“110”) were used as a start sequence to indicate (to a
valid decoder) the beginning of the transmission. Each ‘1’
bit was converted into a vibration that lasts for 200 ms and
each ‘0’ bit was converted to a 200 ms interval of stillness
(i.e., no vibration). Thus the PIN was transmitted using 17
bits resulting in a total transmission time of 17 × 200 ms =
3.4 seconds.

B. Eavesdropping Challenges

As discussed above, PIN-Vibra is based on a constant bit
length of 0.2 sec. In each bit duration, the phone either vibrates
or there is a sleep period. The phone vibration has very low
sound amplitude which makes it harder to distinguish the
vibrations from random noise. Furthermore the vibration might
last for a few consecutive bit periods with no gap between
the periods which makes it impossible to detect the beginning
of each vibration separately. Therefore, once we detect the
beginning of the phone vibration, we use a constant bit length
to extract the signal of each consecutive bit and decode it. We
found that, similar to the IMD set-up, accurate detection of
the first bit is essential to correctly detect the PIN.

We do note that the fact that the signal is longer (200 ms vs.
3 ms) and that the ‘0’ bit is marked by sleep (as opposed to a
different frequency in IMD Pairing) makes it somewhat easier
to eavesdrop upon PIN-Vibra. However, unlike the piezo,
which is intended to generate audio and has specific noticeable
frequency peaks for each bit, the phone vibration audio signal
is a by-product (of vibration) and is not centered around one
specific frequency. This makes it harder to distinguish the
signal from random background audio sounds.

To solve this problem, we start by recording vibration from
a close range and characterizing the audio signal by finding
the audio frequencies associated with vibrations. Then, we take
recordings from farther and try to locate regions in which these
frequencies are more obvious. Unlike IMD eavesdropping, we
found that we need to examine two wider frequency intervals
to be able to detect the vibration. This allows us to detect with



Supervised Methods Unsupervised Methods
Features FFBP PNN LC KMeans EM FF MDB

FFT 97.22% 56.94% 97.34% 76.50% 97.80% 57.06% 76.74%
MFCC 99.88% 99.54% 99.77% 98.38% 99.65% 67.36% 99.42%

TABLE I: Correctness of Supervised and Unsupervised Methods both for FFT and MFCC Features in 3 feet distance between
Microphone and Piezo

high probability the existence of a vibration while eliminating
random noise.

Another challenge in PIN-Vibra eavesdropping arises from
attempting to eavesdrop using a standard (inexpensive) PC mi-
crophone. Since noise cancellation algorithms are commonly
used today on standard PC microphones (such as the one we
used for our experiments), it makes it harder to eavesdrop from
a distance. Noise cancellation mechanisms in microphones
attempt to distinguish between audio coming from close by
and audio coming from a distance. In this case, frequencies of
audio coming from a distance will be filtered out (making it
easier to hear the close-by audio). Therefore, the further our
phone is from the microphone, the higher the likelihood the
system may attempt to cancel it out.

Our experiments showed that the vibration spectrum indeed
became very blurred when we took recordings from a few feet
away (vs. the close by recordings). When comparing the phone
vibration with the IMD sound, we find that the amplitude is
lower and the spectrum stretches over two wide frequency
intervals. Therefore, we suspect that the phone vibration
is more vulnerable to the effects of the noise cancellation
mechanism which causes larger signal blurring when captured
from a few feet away.

C. Set-up

For our experiments, we used the same components dis-
cussed in Section V-B. Additionally, we used a Nokia mobile
phone model E61 3, the same model used in the experiments
reported in [24].

The following steps were followed to capture the recordings:
• The phone was programmed to produce a random 14-bit

value (“01000111010010” or 4562 decimal PIN) prefixed
with the beginning sequence “110” (using the original
PIN-Vibra prototype [24]).

• The phone was held next to a wallet (the two touched
each other) and set to send the PIN (Figure 6). This
was done to emulate RFID authentication as described
in [24]).

Sound Level Measurements: We measured the audio inten-
sity of our mobile phone vibrations. We found that when
measuring very close to the phone (a few cm away) the reading
was 70 dB SPL and reduced to 62 db SPL from 3 ft away.
We also found that touching the phone with a wallet produced
no difference in the measurements (which indicates that there
was no dampening effect due to touching the phone with the
wallet). The measured SPL of the phone vibration is equivalent
to quiet conversation (60 dB) and can be heard by the human
ear. However, we observed that the overall vibration key signal

3Specifications are available at: http://www.forum.nokia.com/devices/E61/

Fig. 6: Pin-Vibra Setup

sounds like one continuous vibration and due to the short
duration of each bit, it is not possible to distinguish between
a vibration bit period and a “sleep” period just by manually
listening to the signal. Therefore, we attempt to utilize signal
processing methods to detect the beginning of the key.

D. General Approach

The PIN-Vibra algorithm is similar to the IMD scheme in
that they both use a beginning sequence to mark the start of
the key (adding a beginning sequence is part of the original
PIN-Vibra algorithm). Both schemes use a constant bit length
to send each consecutive bit with no gap between the bits.
Therefore, we utilize an algorithm similar to the one we used
for the IMD eavesdropping (Figure 4).

E. Audio Signal Decoding Algorithm

1) Frequency Characteristics: We start by characterizing
the phone vibrations as recorded from a close distance (a
few cm away from the phone). We examined the vibration
spectrum for our phone and found that the frequencies stretch
over two intervals: 125-250 Hz and 1.1-1.5 kHz. Therefore,
in order to detect the vibration accurately, our algorithm can
not rely on detecting one specific frequency but rather has to
look at a wider range of frequencies.

To correctly decode the signal, we need to first determine
the period which gives the best frequency spectrum within one
vibration. Each bit is 0.2 seconds in duration. However, careful
examination of the recorded bit shows that the main vibrations
occur in the middle three quarters of the bit. Therefore, we
use a window size of 150 ms when searching for the first bit
vibration.

2) Start Sequence Detection: As mentioned previously, to
allow for correct detection of the start of the PIN transmission
(by a valid decoder, i.e., an RFID tag with an accelerometer),
the PIN-Vibra method [24] includes a ‘start’ sequence equal
to “110” as a prefix to the PIN. We begin by looking for
this start sequence. Since the sound emitted during the phone
vibrations is of very low amplitude, detecting the beginning
sequence ensures that the PIN is decoded from its beginning



and helps distinguish the PIN vibrations from other sounds
that may be emitted by the phone.

Finding first potential bit: We calculated the spectrum using
a 150 ms window and a step size of 25 ms between the
beginning of the consecutive signal regions. We performed a
Fast Fourier Transform (FFT) for each region and calculated
the sum of the FFT values over the two vibration frequency
intervals (125-250 Hz and 1.1-1.5 kHz). We compared these
sums against set threshold levels to detect the vibration for the
frequency spectrum.

Bit synchronization: After the first vibration was detected,
we used energy calculations to improve the detection of the
beginning of the key. To this end we examined all the periods
of 0.1 seconds within the discovered vibration and chose the
part with the highest energy as the middle of our positive bit
(we subtracted a quarter size bit length from the start of the
region to mark the beginning of the first bit).

Detecting following bits: We note that the phone vibration
bits are sent in a consecutive order, and that the vibrations
last for 0.2 seconds (with a “slack” period of 5 ms between
the vibrations). Therefore, once the first potential vibration is
found we continue by decoding the two following bits as either
‘1’ (vibration) or ‘0’ (sleep). This is done by calculating the
FFT for the 0.2 second window for each consecutive bit and
repeating the same decoding procedure (utilizing two curves
of FFT sums in the 130-25 Hz and 1.1-1.5 kHz frequency
regions) until the beginning sequence is found

The frequency sum curve threshold was initially set to the
maximum sum of FFT coefficients for the recording, and than
lowered by 10% in each iteration until the start sequence was
found. For the two curves, the threshold for the second curve
was set to twice the threshold for the first curve. We note
that the vibration is very low and hard to distinguish from the
background noise. Therefore, setting a threshold that’s too low
will detect random noise as vibration.

3) Feature Vectors Generation: Upon detecting the start
sequence, we create both MFCC and FFT feature files for each
following bit. We feed these input vectors through machine
learning classifiers (we will discuss these in Section VI-F).
As a result we construct a 17-bit binary data. We extract
the beginning sequence and convert the 14 bits into a 4-digit
decimal PIN.

F. Classifiers

PIN-Vibra eavesdropping yields feature vectors correspond-
ing to a 17-bit PIN/key both for FFT and MFCC. FFT feature
vectors have 12 columns and MFCC feature vectors have 13
columns, and both of them have 17 rows as per the length
of the key. We apply supervised and unsupervised learning
algorithms and decode the key from the feature vectors (similar
to the methods used in Section V-D5).

Result of supervised and unsupervised algorithms for com-
promising the key by audio eavesdropping on PIN-Vibra
method are depicted in Table II. We found that MFCC works
as a better feature than FFT and almost all algorithms work
perfectly (with 100% correctness) except the unsupervised FF
algorithm. Among all of them, unsupervised EM seems to be
a winner for both FFT and MFCC features.

VII. EAVESDROPPING BEDA
A. Encoding and Decoding

In the BEDA scheme [27], one device vibrates (or blinks)
for 0.5 seconds. The user is required to press the button on the
other device synchronously whenever the first device vibrates
(or blinks). When the protocol starts, the first device generates
a short (21-bit) random secret key (a password or PIN) and
provides a total of eight signals. Each signal is generated by
the idle time determined by the i-th 3-bit segment of the secret.
Therefore, the time between each consecutive vibrations (or
blinks) is equal to the value of these 3-bits segment in
seconds. The receiving device measures the intervals between
successive button presses in milliseconds and rounds it to the
closest full second. Each of those rounded integers is translated
into 3-bit segment to reconstruct the full key.

B. Challenges and General Approach

We attempt to eavesdrop on the Blink-Button, Vibrate-
Button and Button-Button BEDA methods. We note that eaves-
dropping over button presses in the Blink-Button and Button-
Button schemes is somewhat similar to keyboard eavesdrop-
ping as discussed in [2], [32]. However, when we examine the
audio signal, we find that the mobile phone button pressing
is much quieter than the keyboard on the laptop computer we
used and therefore detecting the click may be a harder task.

We note that the BEDA method is different from IMD
Paring and PIN-Vibra in that the key is not sent in a binary
form. Instead, the key is constructed from the time differences
between vibrations and button presses. Therefore, unlike IMD
Pairing and PIN-Vibra we do not have a constant “bit length”
which defines each bit and therefore we can not classify each
signal window. Rather, the BEDA method requires the eaves-
dropper to detect each vibration and button press separately
and calculate the duration between them. Therefore, we only
use signal processing methods to detect the beginning of each
time period and decode the key from it without the need for
using a classifier in this case.

C. Set-Up

For our experiments, we used the same components we
discussed in Section V-B. Additionally, we used one Nokia
mobile phone model E61 (as also used in the PIN-Vibra setup),
and one Nokia N90 4. Both of these models were used in the
experiments reported in [27].

Vibrate-Button and Blink-Button: In the implementation of
these methods, the E61 served as the server (the one that
vibrates or blinks) and the N90 as the client (used for button
pressing).

The following steps were performed as part of our experi-
ments:

• The server phone was programmed with a randomly gen-
erated 5-digit (or 6-event) secret key. Each digit specified
the difference between every two vibrations (or blinks) in
units of half a second.

4Specification are available at: http://www.forum.nokia.com/devices/N90/



Supervised Methods Unsupervised Methods
Features FFBP PNN LC KMeans EM FF MDB

FFT 90.76% 94.96% 94.96% 92.44% 99.16% 83.19% 92.44%
MFCC 100.00% 100.00% 100.00% 100.00% 100.00% 99.16% 100.00%

TABLE II: Correctness of Supervised and Unsupervised Methods both for FFT and MFCC Features in 3 feet distance for
Pin-vibra attack

• The server phone was set to transmit the secret key. Each
time the server system vibrated (or blinked), the user
clicked on a button on the client system (Figure 7).

Button-Button: For the implementation of this scheme, both
the E61 and the N90 were used together by the user to
exchange the code, by pressing and releasing a button on
both phones simultaneously. The buttons were pressed and
then released three times producing a total of 6 events.

The phone application calculates each key digit by measur-
ing the time difference between each two events in units of
0.5 second (generating a random 5-digit key).

Sound Level Measurements: We measured the signal SPL
volume and found that the button pressing on our N90 phone
measures 64 db SPL from a close by (a few cm away). When
attempting to measure the volume from 2 ft distance, we found
that the clicks were too low to be registered by the sound level
meter (Radio Shack model 33-2055). The E61 sound levels
appear in Section VI-C.

D. Vibrate-Button

In Vibrate-Button, the user needs to press a button on one
device when the other device vibrates. Both button pressing
and vibration produce a very low amplitude sound that makes
eavesdropping challenging. As discussed in Section VII-B,
the sound that the button emits is very short in duration
relative to the vibration and overlaps it, which makes it hard to
distinguish from the vibration, depending on the location of the
eavesdropping device. The vibration eavesdropping challenges
are similar to the ones described in the PIN-Vibra scheme
(Section VI-B). The main problems arise from the fact that
the mobile phone audio frequencies stretch over two intervals
and the attempt to eavesdrop from a distance with a standard
PC microphone (which regards low amplitude sounds as noise
and attempts to cancel them).

When analyzing the Vibrate-Button audio signal (shown in
Figure 8), we note that the vibration lasts around 0.5 seconds
while the button click has one main observable peak which
lasts only 2-3 ms and overlaps the vibration. Since the code
is determined by the time differences between the vibrations,
our techniques concentrated on detecting the server vibration
duration (which subsumes the button pressing).

Since we found that typically the recording spectrum (Fig-
ure 10) is not even throughout the duration of the vibration,
we divided the test interval into smaller parts. Specifically, we
found that using a window size of 125 ms and calculating the
spectrum for these windows produced better results than using
a window size of 0.5 seconds. We create the signal spectrum
by calculating the FFT for the signal using a step size of
62.5ms (and a 125 ms window). We noticed that the vibration
spectrum is higher over the range 1 - 7 kHz. We therefore

Fig. 7: BEDA Setup

Fig. 8: Audio signal (Vibrate-
Button)

Fig. 9: FFT sum (Blink-Button
5-digit key)

Fig. 10: spectrum (Vibrate-
Button)

calculated the sum of the frequencies over this range and used
a threshold to determine potential vibration regions. We plot
the resulting curve in Figure 9. For each test signal, we confirm
the vibration only if at least two windows within a range of
five were positive. This resulted in good vibration detection
and removal of “random noise” in the recording. The code was
extracted by computing the difference between the discovered
vibrations in 500 ms units.

To find a proper threshold for the FFT coefficients curve, we
start from a high value (equal to the maximum curve for the
recording) and reduce the threshold by 10% each time until
we detect 6 events.

E. Blink-Button

For the Blink-Button scheme, we recorded the sounds of
button pressing on the client phone. When examining the
button click period, we observed that each click on the mobile
phone typically produced a sharp vibration over a short period
(about 2-3 ms) and a second spike (lower), less than half a
second apart. This corresponds to the press and release of
the button. To detect the button click, we chose a window
size of 10 ms and an overlap of 2.5 ms. We “windowed” our
signal with a Hamming window [12] and performed FFT on
the resulting signal. This method is similar to the one described
in [32] used to decode keyboard presses, and our observation
of the signal confirmed it is also suitable for our mobile phone
key pressings. We summed up the FFT values over the 1-11
kHz frequencies and “thresholdized” this sum to detect the



recorded vibrations (an example of this curve is shown in
Figure 9).

To verify the button click and eliminate background sounds,
the program first confirms the existence of an actual vibration.
The code was then calculated by computing the difference
between the verified button clicks (in 500 ms units).

To find a proper threshold, we start from a high value
(equal to the maximum curve for the recording) and reduce the
threshold by 10% each time until we find 6 events (a 5-digit
code).

F. Button-Button

For the Button-Button scheme, we record the sound of
button pressing on both phones. The scheme is similar to
the Blink-Button method since only the phone key clicks are
emanating audio signals. However, unlike the Blink-Button
scheme, in this case the attacker needs to detect accurately
both the press and release events in order to calculate the code.
Since the release is significantly quieter than the press, the
code detection becomes even more challenging. In addition,
we get two button clicks (from two devices) that either overlap
or are very close to each other, which further complicates the
ability to detect accurately the time of each press/release.

To implement the attack, we eavesdrop on the communica-
tion from 3 ft distance (Figure 11). To detect the button click,
we choose a window size of 10 ms and an overlap of 2.5 ms.
We window our recorded signal with a Hamming window and
perform FFT on the resulting signal.

Since the Button-Button method requires that we distinguish
between both a press event and a release event, we further need
to locate frequency features which can be used to detect both
successfully. Examination of the signal spectrums shows that
the press is best detected by summing the frequency features
over the range 0.4-11 kHz (as done for the previous BEDA
variants). However, the audio frequencies of the button release
signal are concentrated in the 1-3 kHz range. Our tests further
showed that summing only the frequencies in the latter range
for both the press and release produced better overall results.
We therefore calculate this sum for each window spectrum and
compare it to a threshold to detect the existence of an event
(button press or release).

To further pinpoint the exact location of the start of the
button event, for each event of length 10ms, we further
examine signal windows of 2.5 ms within this period (using
step size of 1 sample) and locate the region which has the
maximum energy. We choose the beginning of this region as
the beginning of each Button-Button event.

To detect the sent code, we calculate the time difference
between each two consecutive events, divide it by units of
0.5 sec and round it to the nearest integer. However, to
further improve the detection, in cases where the resulting time
difference is in the middle between two integers (specifically,
when the resulting numbers has the digits 4 or 5 after the
decimal point), a second option is chosen. For example, if the
resulting difference is 2.51, then as the first option the integer
2 is chosen, and as a second option the integer 3 is chosen for
the code. Since this would only be considered in cases where
the first code is tested and found incorrect, this further raises

Fig. 11: Button-Button signal
Fig. 12: FFT sum (Button-Button
5 digit key)

the detection capability while only requiring part of the codes
to be retested.

To set the threshold for the FFT coefficients curve, we
start from a large value (equal to the largest sum of the FFT
coefficients over the recording). We then lower the threshold
by 5% in each iteration until we detect 6 events (a 5-digit
code).

G. Results

The Vibrate-Button recordings were made from 3 ft distance
from the vibrating phone (around 4 ft distance from the client
phone). For Vibrate-Button eavesdropping tests, we took 20
recordings of the phone vibrations using a PC microphone.
For 19 of the recordings, we succeeded in fully decoding the
key. In one of the recordings, only three of the five digits
were decoded correctly. Therefore, our overall success rate
was 98%.

For Blink-Button eavesdropping tests, we took 20 record-
ings from 3 ft away from the client phone. We received results
similar to the Vibrate-Button test. Only one of our recording
was not fully decoded (with three of the 5 digits decoded
correctly) and our overall decoding rate was 98%.

For Button-Button experiments, we took a total of 60
recordings from 3 ft distance. Of these recordings, 44 were
detected correctly fully. For the rest of the recordings, part of
the bits were detected correctly, resulting in an overall success
rate of 82% (the success rate is calculated as described in
Section V-D5). These results show that even in cases where
the event is a single button press or release (which is inherently
harder to detect than the button press), the code can be detected
with high probability.

VIII. DISCUSSION AND CONCLUSION

Technical Novelty of our paper: First of all, this paper is
the first to study acoustic eavesdropping and side channel
attacks against device pairing mechanisms. In so doing, we
overcome a few technical challenges that were not encountered
before, to the best of our knowledge. For the IMD case, we
are classifying continuous data where there is no separation
between the bits. This makes accurate synchronization of the
beginning of the first bit critical for correct decoding.

We also study eavesdropping in a realistic setting (from
distances up to a few feet away) and compare the results
from different distances using very inexpensive equipment
(PC microphone). Previous research on keyboard acoustic
emanations concentrated on recordings from a single close
by distance or used special equipment (parabolic microphone)
for farther recordings.



Scheme Signal Processing Window Size (ms) Classifiers Used
IMD Pairing Energy+Frequency Ratio 3 Supervised/Unsupervised

PIN-Vibra FFT Coefficients sum 150 Supervised/Unsupervised
Vibrate-Button FFT Coefficients sum 125 None
Blink-Button FFT Coefficients sum 10 None

Button-Button

TABLE III: Methods used to detect and decode bits

Our research also uses classifiers and signal processing tools
for binary classification of audio data (i.e., detect the mark
and spaces). Our results show that binary classification may
be easier, which suggests choosing non-binary coding schemes
may provide higher security.
Classifiers and Neural Networks: For our IMD and PIN-
Vibra decoding, we use signal-processing based methods to
decode the beginning sequence and neural networks to decode
the rest of the signal. Neural networks provide higher-level
analysis than regular processing (which is based on energy
or sum of features). Therefore, we utilized them in cases of
known bit length. However, in order to be able to correctly
create the input features for the neural networks, the accurate
signal beginning location needs to be found. Therefore, signal-
processing methods are needed to pinpoint the exact sequence
beginning.

Implications of Our Attacks: The attacks we demonstrated
on IMD Pairing, PIN-Vibra and the BEDA variants can be
accomplished with a high accuracy by using inexpensive off-
the-shelf equipment, such as PC microphones, and existing
signal processing techniques and/or machine learning classi-
fiers. We successfully executed our attacks from a distance
of up to 5-6 ft for IMD Pairing and 3 ft for PIN-Vibra and
BEDA. Our overall accuracy was 97-100% for IMD Pairing,
100% for PIN-Vibra, 98% for the Vibrate-Button and Blink-
Button BEDA variants and 82% for the Button-Button method
(for eavesdropping up to 3 ft). We summarize the techniques
used in Table III.

As described in III , execution attacks can occur in many
scenarios5. Moreover, for the IMD set-up, we also explored
eavesdropping using a parabolic microphone and were able
to achieve reasonable accuracies from a distance of 12 ft; we
anticipate similar results when working with a parabolic mi-
crophone for distant eavesdropping on PIN-Vibra and BEDA
variants.

We remark that compromising IMD Pairing and PIN-Vibra
is an easier task compared to attacking BEDA. This is because
the former schemes transmit the key over the underlying OOB
channel, whereas the latter only transmits a password using
which the two devices derive the key via a PAKA protocol.
This implies that even after eavesdropping over the password
in BEDA, the adversary would still need to act as a man-in-
the-middle (and fast enough) to be able to compromise the
security of the protocol.

In the IMD set-up, the adversary can always verify the

5The adversary can also eavesdrop over the wireless radio channel to detect
as to when the pairing process is initiated. Note that pairing protocols would
typically precede with a certain negotiation phase, as is customary for key
exchange protocols (e.g., IKE).

correctness of the key that was eavesdropped once equipped
with a known plaintext-ciphertext pair. For PIN-Vibra and
BEDA, the adversary can try to use the PIN/password that
was eavesdropped to unlock the RFID tag or the phone,
and launch the man-in-the-middle attack, respectively. The
adversary can compromise the security of these approaches
with a high probability (as shown by our high accuracy rates),
much higher than the original success probability of 2−k for a
k-bit password. We note, however, that learning the PIN only
undermines the security of PIN-Vibra against impersonation
attacks (e.g., in case of the tag theft); the method still provides
strong protection against unauthorized reading and some relay
attacks. This is because the attacker needs direct physical
access to the tag in order to unlock it (by “touching” the phone
with the tag), and will not be able to read the tag otherwise,
even if it knows the PIN.

Hardware Variations and Attack Techniques: The attacks
we developed included general signal processing based algo-
rithms and/or classifiers and were not hardware specific. For
IMD eavesdropping, we used spectrum analysis and energy
calculations to differentiate between two piezo frequencies
and machine learning methods to further classify all the
bits automatically. These attacks can be used on any piezo
hardware without being limited to specific FSK frequencies
or piezo amplitude. Furthermore, since the method is based
on the piezo sending the key via audio signal, an attacker
can always use a higher-end microphone to record the au-
dio emanations (even if the piezo is relatively quiet) and
still use the same techniques. Similarly, for PIN-Vibra and
BEDA Vibrate-Button eavesdropping attacks, we use spectrum
analysis tools that do not depend on a specific frequency
(specifically, the vibration in our tests extended over a large
frequency interval). Therefore, this attack can be used on any
phone model. Since most mobile phones would emanate some
sound – which is even audible to the human ear – when
vibrating, we expect our attacks can work on any model phone.
In case of the BEDA Blink-Button and Button-Button attacks,
since the audio emanations result from both the finger hitting
the key and the key hitting the underlying plate beneath the
keypad, typically both events will cause acoustic emanations
regardless of the specific model of phone used (similarly,
all computer keyboards tested in [2] emitted distinct acoustic
emanations). Since we only try to detect the existence of each
button click (and not which button), we do not need a detailed
signal spectrum and can eavesdrop on even a low-volume
signal.

Based on our results and discussion above, we can conclude
that all three approaches analyzed in this paper provide a
weaker level of security compared to what was originally



assumed or is desired for the pairing operation. Designing an
AS-OOB pairing method – resistant to eavesdropping – thus
appears to be a challenging research problem and an avenue
for further work. We feel that the broader impact of our work
lies in raising awareness that some pairing mechanisms which
produce audio emanations are vulnerable to eavesdropping
attacks, and in motivating the need for observation-resilient
pairing mechanisms for constrained ubiquitous devices.
Open Problem: Given the success of our acoustic eaves-
dropping attacks, our conclusion is that relying upon the
secrecy of audio channels is dangerous (since this channel is
inherently not secret given that audio travels in all directions)
and should be avoided while developing pairing mechanisms.
User-friendly and eavesdropping-resilient pairing is therefore
a challenging problem that will need future investigation.
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