
Authenticated Key Agreement with Key Re-Use in the
Short Authenticated Strings Model

Stanisaw Jarecki and Nitesh Saxena

Abstract. Serge Vaudenay [19] introduced a notion of Message Authenti-

cation (MA) protocols in the Short Authenticated String (SAS) model. A

SAS-MA protocol authenticates arbitrarily long messages sent over insecure
channels as long as the sender and the receiver can additionally send a very

short, e.g. 20 bit, authenticated message to each other. The main practical
application of a SAS-MA protocol is Authenticated Key Agreement (AKA)

in this communication model, i.e. SAS-AKA, which can be used for so-called

“pairing” of wireless devices. Subsequent work [8, 11, 9] showed three-round
SAS-AKA protocols. However, the Diffie-Hellman (DH) based SAS-AKA pro-

tocol of [9] requires choosing fresh DH exponents in each protocol instance,

while the generic SAS-AKA construction given by [11] applies only to AKA
protocols which have no shared state between protocol sessions. Therefore,

both prior works exclude the most efficient, although not perfect-forward-

secret, AKA protocols that re-use private keys (for encryption-based AKAs)
or DH exponents (for DH-based AKAs) across multiple protocol sessions.

In this paper, we propose a novel three-round encryption-based SAS-

AKA protocol, using non-malleable commitments and CCA-secure encryption
as tools, which we show secure (but without perfect-forward secrecy) if each

player re-uses its private/public key across protocol sessions. The cost of this

protocol is dominated by a single public key encryption for one party and a
decryption for the other, assuming the Random Oracle Model (ROM). When

implemented with RSA encryption the new SAS-AKA protocol is especially at-
tractive if the two devices being paired have asymmetric computational power

(e.g., a desktop and a keyboard).

1. Introduction

Serge Vaudenay [19] introduced a notion of a message authentication protocol
(MA) based on so-called short authenticated strings (SAS). Such a protocol allows
authenticating messages of arbitrary sizes (sent over insecure channel) making use
of an auxiliary channel which can authenticate short, e.g. 20-bit, messages. It is
assumed that an adversary has complete control over the insecure channel, i.e., it
can eavesdrop, delay, drop, replay, inject and/or modify messages, while the only
restriction on the auxiliary channel is that the adversary cannot modify or inject
messages on it, but it can eavesdrop, delay, drop, or replay them. Crucially, no
other infrastructure assumptions are made, i.e. the players do not share any keys or

Key words and phrases. Short Authenticated Strings, Authentication, Authenticated Key
Agreement.

1

2 STANISAW JARECKI AND NITESH SAXENA

passwords, and there is no Public Key Infrastructure they can use. The only lever-
age for establishing security is this bandwidth-restricted, public but authenticated
“SAS channel” connecting every pair of players.

The primary application of SAS-MA protocols is to enable SAS-based authen-
ticated key agreement (SAS-AKA) between devices with no reliance on key pre-
distribution or a public-key infrastructure. A perfectly fitting and urgently needed
application of SAS-AKA protocols is establishing secure communication channels
between two devices communicating over a publicly-accessible medium (such as
Bluetooth, WiFi), which in addition can also send short authenticated messages
to each other (and are hence equipped with a SAS channel), given some amount
of manual supervision or involvement from the users. (This problem is referred
to as “device pairing” in the systems literature.) Implementations of such SAS
channels have been proposed for a variety of device types, assuming various user
interfaces and different type of manual supervision. In the simplest example of
two cell-phones, phone owners can be asked to type a 20 bit string (6 digits)
displayed by one phone into the keypad of the other. The systems proposed in
[18, 1, 13, 7, 15, 17, 12] show that the same effect can be accomplished with
more primitive devices (e.g., with no keypads) or with less user involvement (e.g.
relying on sound, blinking LED lights, cameras on the phones, etc). In all of these
schemes, it is desirable to have SAS-AKA protocols which are inexpensive both in
computation and communication, since the underlying devices might have limited
computation and battery power, and which provably achieve an optimal 2−k+ ε
bound on the probability of adversary’s attack given a k-bit SAS channel, where ε
is a negligible factor in the security parameter independent of k. The SAS-AKA
protocol we propose in this paper significantly improves upon the first goal com-
pared to the previous work, at the expense of achieving a slightly weaker bound on
adversary’s attack, namely 2−k+1+ ε.

1.1. Prior Work on SAS-MA Protocols. Following [19, 11], we refer to
a bi-directional message authentication protocol in the SAS model as SAS-MCA,
which stands for “message cross-authentication”. Note that two instances of a
SAS-MA protocol run in each direction always yield such SAS-MCA scheme, but
at twice the cost of the underlying SAS-MA scheme. A straightforward solution for
a SAS-MCA was suggested by Balfanz, et al. [1]: Devices A and B exchange the
messages mA, mB over the insecure channel, and the corresponding hashes H(mA)
and H(mB) over the SAS channel. Although non-interactive, the protocol requires
H to be a collision-resistant hash function and therefore it needs at least 160 bits
of the SAS bandwidth in each direction. Pasini and Vaudenay [10] showed a non-
interactive protocol which weakens the requirement on the hash function to weak
(i.e. second-preimage) collision resistance, and reduces the SAS bandwidth to 80-
bits. The ’MANA’ protocols in Gehrmann et al. [6] reduce the SAS bandwidth to
any k bits while assuring the 2−k bound on attack probability,1 but these protocols
require a stronger assumption on the SAS channel, namely the adversary is assumed
to be incapable of delaying or replaying the SAS messages, which in practice requires

1Formally, by “2−k bound on attack probability” we mean that the probability that any

adversary that runs in time polynomial in a security parameter n, which is independent of the SAS-

bandwidth k, succeeds against a single instance of the protocol is upper-bounded by 2−k+ ε(n),
where ε(n) is negligible in n.

AUTHENTICATED KEY AGREEMENT WITH KEY RE-USE IN THE SHORT AUTHENTICATED STRINGS MODEL3

synchronization between the two devices, e.g. one device never abandons one session
and restarts another session without the other device also doing the same.

In [19], Vaudenay presented the first SAS-MA scheme, called V-MA and de-
picted in Figure 1, with the analysis that bounds the attack probability by 2−k for a
k-bit SAS channel. In [19] this protocol is shown secure under the assumption that
the commitment scheme satisfies what Vaudenay refers to as “extractable commit-
ment”, and subsequently [8] pointed out that this proof goes through under the
more standard and possibly weaker assumption of a non-malleable commitment.
The bi-directional SAS-MCA protocol presented in [19] results from running two
instances of the V-MA protocol, one for each direction, but with each player Pi/j
using the same challenge Ri/j in both protocol instances. This SAS-MCA scheme
requires 4 communication rounds over the insecure channel and was shown to give
a 2−k security bound.

Pi(m) Pj

Pick Ri ← {0, 1}k

(c, d)← com([m|Ri])
m,c // Pick Rj ← {0, 1}k
Rjoo
d //

SAS = Ri ⊕Rj
SAS +3 [m|Ri]← open(c, d)

Output (Pi,m) if SAS = Ri ⊕Rj

Figure 1. V-MA : unidirectional SAS-MA authentication (Pi to
Pj) based on non-malleable commitments

In subsequent work, Laur, Asokan, and Nyberg [8, 9] and Pasini and Vaude-
nay [11] independently gave three-round SAS-MCA protocols. Both schemes are
modifications of the V-MA protocol of Figure 1, and both employ (although differ-
ently) a universal hash function in computation of the SAS message. Both of these
protocols make just a few symmetric key operations if the commitment scheme is
implemented using a cryptographic hash function modeled as a Random Oracle.
Both protocols claim the 2−k security bound at least in the ROM model, although
the scheme of [8, 9] was analyzed only in a “synchronized” setting where the same
pair of players never execute multiple parallel protocol instances with each other 2

(see Theorem 3, Note 5 of [9]).

1.2. Prior Work on SAS-AKA Protocols. Pasini and Vaudenay [11] ar-
gue that one can construct a 3-round SAS-based key agreement protocol (SAS-
AKA), from any 3-round SAS-based message cross-authentication protocol (SAS-
MCA) like the SAS-MCA protocol presented in [11], and any 2-round key agree-
ment scheme (KA) which is secure over authenticated links, e.g. a Diffie-Hellman
or an encryption-based KA scheme. The idea is to run the 2-round KA protocol

2While in practice it might often be the case that a pair of players is not supposed to execute
several protocol instances concurrently, a man-in-the-middle adversary can cause that several

instances of the protocol between the same pair of players are effectively alive, if he manages to

force one device to time-out and start a new session while the other device is still waiting for an
answer.

4 STANISAW JARECKI AND NITESH SAXENA

over an insecure channel, and authenticate the two messages m1,m2 produced by
the KA protocol using the SAS-MCA protocol. (To achieve a 3-round SAS-AKA
protocol, the KA messages m1,m2 are piggybacked with the SAS-MCA protocol
messages.) This compilation is significantly different from the standard compilation
from a protocol secure over authenticated links to a protocol secure over insecure
channels, which works by running a separate unidirectional message-authentication
sub-protocol (MA) for each message of the underlying protocol, e.g. as in Canetti
and Krawczyk’s MA + KA → AKA compilation in [4]. If the SAS-MA authen-
tication protocol has k rounds then this compilation would result in a 2k-round
SAS-AKA scheme, because the responder cannot, in general, send the second KA
message m2 before successful completion of the SAS-MA sub-protocol that authen-
ticates the first KA message m1. In contrast, to achieve a (k+ 1)-round SAS-AKA
protocol, the compilation given in [11] prescribes that the second message of the
KA protocol, m2, is sent by the responder straight away, i.e. on the basis of the
first KA message m1, which at this moment has not been authenticated yet.

The compilation of Pasini and Vaudenay does result in secure 3-round SAS-
AKA schemes, but only when it utilizes a KA scheme which does not keep shared
state between different instances of the KA protocol run by the same player. (This
was indeed the implicit assumption taken by the proof of security for this compi-
lation given in [11].) Moreover, such SAS-MCA + KA → SAS-AKA compilation
cannot be applied to KA schemes which do share state between instances. For a
simple counter-example, consider a 2-round KA protocol secure in the authenti-
cated links model, which is amended so that (1) the computed session key is sent in
the last message encrypted using responder Pj ’s long term public key pkij chosen
for a particular initiator Pi, and (2) the responder Pj reveals the corresponding
private key skij if the initiator Pi’s first message is a special symbol which is never
used by an honest sender. Such protocol remains secure in the authenticated links
model (in the static corruption case), because only a dishonest sender Pi can trig-
ger Pj to reveal skij . However, this protocol is insecure when compiled using the
method above, because when Pj computes its response it does not know if the mes-
sage sent by Pi is authentic, and thus a man-in-the-middle adversary can trigger
Pj to reveal skij by replacing Pi’s initial message in the KA protocol with that
special symbol. This way the adversary’s interference in a single protocol session
leads to revealing the keys on all sessions shared between the same pair of players,
and thus the compiled protocol is not a secure SAS-AKA. (We elaborate on this
counter-example in more detail in Appendix B.)

Independently, Laur and Nyberg also proposed a SAS-AKA protocol [9], based
on their own SAS-MCA protocol [8]. In this (Diffie-Hellman based) SAS-AKA
protocol, the Diffie-Hellman exponents are picked afresh in each protocol instance,
and so this protocol also does not support key re-use across multiple sessions.

1.3. Limitations of SAS-AKA Protocols without Key Re-Use. The
key agreement protocols that do not share state between sessions, and thus in par-
ticular do not allow for re-use of private keys, are by definition Perfect-Forward
Secret (PFS) but they are also significantly more expensive than non-PFS key
agreement protocols. Specifically, the standard Diffie-Hellman PFS KA requires
two exponentiations per player, while the encryption-based PFS KA requires gen-
eration of a (public,private) key pair and a decryption operation by one player, and
a public key encryption by the other player. These are also the dominant costs

AUTHENTICATED KEY AGREEMENT WITH KEY RE-USE IN THE SHORT AUTHENTICATED STRINGS MODEL5

of the corresponding SAS-AKA schemes implied by the above results of [8, 11].
In contrast, the non-PFS Diffie-Hellman with fixed exponents costs only one expo-
nentiation per player, and the encryption-based KA costs one decryption for one
player and one encryption for the other. Note that in practice the efficiency of the
non-PFS KA schemes often takes precedence over the stronger security property
offered by perfect forward secret KA schemes. For example, even though SSL sup-
ports PFS version of Diffie-Hellman KA, almost all commercial SSL sessions run
the non-PFS encryption-based KA using RSA encryption, since this mode offers
dramatically faster client’s time (and twice faster server’s time). Also, just as the
asymmetric division of work in the RSA-encryption based key agreement was at-
tractive for the SSL applications, the same asymmetric costs in the RSA-encryption
based SAS-AKA could be attractive for “pairing” of devices with unequal compu-
tational power, e.g. a PC and a keyboard, a PC and a cell-phone, or a cell-phone
and an earset speaker.

Other applications could also benefit from SAS-AKA protocols which allow for
re-use of public keys across multiple protocol sessions. One compelling application
is in secure initialization of a sensor network [16]. Sensor initialization can be
achieved by the base station simultaneously executing an instance of the SAS-AKA
protocol with each sensor. However, since the number of sensors can be large,
generating fresh (RSA or DH) encryption keys per protocol instance would impose
a large overhead on the base station. An encryption-based SAS-AKA protocol
with re-usable public key would be especially handy because it would minimize
sensors’ computation to a single RSA encryption, and the base station would pick
one RSA key pair and then perform one RSA decryption per each sensor. Another
application where key re-use in SAS-AKA offers immediate benefits is protection
against so-called “Evil Twin” attacks in a cyber-cafe, where multiple users run
SAS-AKA protocols to associate their devices with one central access point [14].

1.4. Our Contributions. In this work, we present a provably secure and
minimal cost SAS-AKA scheme which re-uses public key pairs across protocol ses-
sions and thus presents a lower-cost but non-PFS alternative to the perfect-forward
secret SAS-AKA protocols of [9, 11]. Our SAS-AKA relies on a non-malleable com-
mitments just like the SAS-AKA schemes of [19, 8, 11], but unlike the previous
schemes it is built directly on CCA-secure encryption, and it relies on encryption not
just for key-establishment but also for authentication security. As a consequence,
the new SAS-AKA is somewhat simpler than the previous SAS-AKA’s which were
built on top of the three-round SAS-MCA’s of [8, 11], and in particular it does not
need to use universal hash functions.3 However, the most important contribution
of the new SAS-AKA scheme is that it remains secure if each player uses a perma-
nent public key, and hence shares a state across all protocol sessions it executes.
This leads to two minimal-cost 3-round non-PFS SAS-AKA protocols where the
same public/private key pair or the same Diffie-Hellman random contribution is re-
used across protocol instances. Specifically, when instantiated with the hash-based
commitment and the CCA-secure OAEP-RSA, this implies a 3-round SAS-AKA

3On the other hand, it might help to clarify that even though our SAS-AKA protocol implies
also a new SAS-MCA scheme, we do not claim that our scheme is interesting as SAS-MCA,
because it relies on a public-key encryption and is therefore much more expensive than the SAS-

MCA’s of [8, 11] which can be implemented using only symmetric-key cryptography, at least in
ROM.

6 STANISAW JARECKI AND NITESH SAXENA

protocol secure under the RSA assumption in ROM, with the cost of a single RSA
encryption for the responder and a single RSA decryption for the initiator. When
instantiated with the randomness-reusing CCA-secure version of ElGamal [3] this
implies a 3-round SAS-AKA protocol secure under the DH assumption in ROM,
with the cost of one exponentiation per player. In other words, the costs of the SAS-
AKA protocols implied by our result are (for the first time) essentially the same as
the costs of the corresponding basic unauthenticated key agreement protocols. By
contrast, previously known PFS SAS-AKA protocols require two exponentiations
per player if they are based on DH [11, 9] or a generation of fresh public/private
RSA key pair for each protocol instance if the general result of [11] is instantiated
with an RSA-based key agreement.

We note that the SAS-MCA/AKA protocol we show secure is very similar to
the SAS-AKA protocols of [19, 8, 11], and it is indeed only a new variant of the
same three-round commitment-based SAS-MA protocol analyzed in [19], which also
forms a starting point for protocols of [8, 11]. However, prior to our work there was
no argument that such SAS-AKA scheme remains secure when players re-use their
public/private key pairs across multiple sessions. Moreover, as we explain above, it
is unlikely that such result can be proven using a modular argument similar to the
one used by [11] for KA protocols that do not keep state between protocol instances,
which is also why our analysis of the proposed protocol proceeds “from scratch”
rather than proceeding in a modular fashion based on already known properties
of Vaudenay’s SAS-MA scheme. Secondly, our analysis shows that the SAS-AKA
protocol can be simpler than even a standard encryption-based (and ke-reusing)
KA protocol executed over the 3-round SAS-MCA protocol of [8] or [11]. In fact,
our protocol consists of a single instance of the basic unidirectional SAS-MA scheme
of [19], shown in Figure 1, which authenticates only the initiator’s message, but
this message includes the initiator’s (long-term) public key, which the responder
uses to encrypt its message. It turns out that this encryption not only transforms
this protocol to a SAS-AKA scheme but also authenticates responder’s message,
thus yielding not just a cheaper but also a simpler three-round SAS-AKA protocol.

Paper Organization. Section 2 contains our cryptographic tools. Section 3
contains the communication and adversarial models for SAS-MCA and SAS-AKA
protocols. We propose our SAS-MCA / SAS-AKA protocol in Section 4. In the
same section we argue that this protocol is a secure SAS-MCA scheme, and then
we extend this argument to an argument that (essentially the same protocol) is a
secure SAS-AKA scheme in Section 5.

2. Preliminaries

Public-key Encryption. A public-key encryption scheme is a tuple of algorithms
(KeyGen,Enc,Dec), where KeyGen on input of a security parameter produces a pair
of public and secret keys (pk, sk), Encpk(m) outputs ciphertext c for message m,
and Decsk(c) decrypts m from c = Encpk(m). In the SAS-MCA/AKA protocol con-
struction, the encrypted messages come from a special spaceMm = {[m|R] s.t. R ∈
{0, 1}k} where m is some (adversarially chosen) string. Since this message space
contains 2k elements, a chosen-ciphertext secure encryption ensures that an adver-
sary who is given an encryption of a random message in this space can predict this

AUTHENTICATED KEY AGREEMENT WITH KEY RE-USE IN THE SHORT AUTHENTICATED STRINGS MODEL7

message with probability at most negligibly higher than 2−k. Namely, the follow-
ing is a simple fact about CCA-secure encryption. For completeness we give the
standard definition of CCA security and a proof of this fact in appendix A.

Fact 1. If an encryption scheme is (T, ε)-SS-CCA then for every T -bounded
algorithm A and every m,

Pr[ADecCsk(·)(pk,C) = m̂ | (pk, sk)← KeyGen, m←Mm,

C ← Encpk(m)] ≤ 2−k + ε

where DecCsk(·) is a decryption oracle except it outputs ⊥ on C.

Commitment Schemes. Similarly to the SAS-channel message authentication
protocols given before by [19, 8, 11], the protocols here are also based on com-
mitment schemes with some form of non-malleability. In fact, the assumption on
commitment schemes we make is essentially the same as in the SAS-MCA proto-
cols of [19, 11], but we slightly relax (and re-name) this property of commitment
schemes here, so that, in particular, it is satisfied by a very efficient hash-based
commitment scheme in the ROM model for a hash function.

The commitment scheme consists of following three functions: gen generates
a public parameter Kp on input a security parameter, comKp

(m), on input of
message m, outputs a pair of a “commitment” c and “decommitment” d, and
openKp

(c, d), on input (c, d), either outputs some value m′ or rejects. This triple
of algorithms must meet a completeness property, namely for any Kp generated by
gen and for any m, if (c, d) is output by comKp(m) then openKp

(c, d) outputs m.

We assume a common reference string (CRS) model, where a trusted third party
generates the commitment key Kp and this key is then embedded in every instance
of the protocol. Therefore, we will use a simplified notation, and write com(m) and
open(c, d) without mentioning the public parameter Kp explicitly. For simplicity of
notation in the SAS-MCA/AKA protocols, we sometimes use m2 ← open(m1, c, d)
do denote a procedure which first does m ← open(c, d) and then compares if m is
of the form m = [m1|m2] for the given m1. If it is, the modifed open procedure
outputs m2, and otherwise it rejects.

Non-Malleable Commitment Scheme. In our protocols, we use the same no-
tion of non-malleable commitments as in [8], adopted from [5]. An adversary is a
quadruple A = (A1,A2,A3,A4) of efficient algorithms interacting with Challenger.
(A1,A2,A3) represents an active part of the adversary that creates and afterwards
tries to open related commitments and A4 represents a distinguisher. Challenger
is initialized to be in either of two environments, called “World0” and “World1”. A
succeeds if A4 can distinguish between these two environments World0 and World1.

Challenger first runs gen to produce Kp and sends it to A1. A1 outputs a mes-
sage spaceM along with state σ and sends it back to Challenger. Challenger picks
two messages m0 and m1 at random fromM and computes a challenge commitment
(c, d) = comKp

(m1) and sends c to A2. A2 in turn responds with a commitment c∗.
Challenger aborts if c∗ = c, and otherwise sends d to A3. Now, A3 must output a
valid decommitment d∗. Challenger computes y∗ = openKp

(c∗, d∗). If y∗ =⊥, then
A is halted. Finally, in the environment World0, Challenger invokes A4 with inputs
(m0, y

∗), whereas in World1, it invokes A4 with inputs (m1, y
∗). A commitment

8 STANISAW JARECKI AND NITESH SAXENA

scheme is (T, ε)-NM (non-malleable) iff for any t time adversary A,

AdvNMcom(A) = |Pr[A4 = 1|World1]− Pr[A4 = 1|World0]| ≤ ε.

For notational convenience, we give a specialization of this non-malleability no-
tion to message space Mm = {[m|R] s.t. R ∈ {0, 1}k}, which our SAS-MCA/AKA
protocol deals with, and to a particular simple type of tests which our reductions
use to distinguish between the two distributions above. Namely, we say that the
commitment scheme is (T, ε)-NM if for every T -limited adversary A = (A1,A2,A3),
the following holds:
Pr[m∗⊕m = σ |KP ← gen, (m, s)← A1(KP),m←Mm, (c, d)← comKP

(m), (c∗, σ)←
A2(c, s), d∗ ← A3(c, d, s),
m∗ = openKP

(c∗, d∗)] ≤ 2−k + ε

Non-Malleable Commitment from SS-CCA Encryption. (T, ε)-NM commit-
ment scheme can be created from any (T, ε)-SS-CCA encryption scheme (KeyGen,Enc,Dec)
[5]. The (Ks,Kp) is a private/public key pair (sk, pk) of the encryption scheme.
compk(m) picks a random string r and outputs c = Encpk(m; r) and d = (m, r),
where Encpk(·; r) denotes the (randomized) encryption procedure with randomness
r. Procedure openpk(c, (m, r)) outputs m if c = Encpk(m; r) and ⊥ otherwise.

Non-Malleable Commitment in the Random Oracle Model (ROM). One
can make a fast and simple commitment scheme using a hash function H : {0, 1}∗ →
{0, 1}l′ modeled as a random oracle, where the adversary’s advantage in the NM-
Security game can be set arbitrarily low at very little cost. Generator gen in this
scheme is a null procedure, com(m) picks r ∈ {0, 1}l and returns c = H(m, r) and
d = (m, r), open(c, (m, r)) returns m if c = H(m, r) and ⊥ otherwise. This scheme

is (T, ε)-NM for ε = qH2−l + q2H2−l
′
, where qH is the number of H-function queries

that can be made by a T -bounded adversary A. This is because the probability that
A2 learns anything about the value committed by the challenger is qH2−l because
the only information A2 can get on m chosen by the challenger is by querying hash
function H for some m ∈M and r used by the challenger, but the probability that
A hits the same r as the challenger is bounded by qH2−l. Moreover, the probability
that A3 is able to decommit to more than one value is bounded by q2H2−l

′
, because

this is the probability that within qH queries to H, the adversary gets a pair of
values which collide.

3. Communication and Adversarial Model

3.1. Network and Communication Setting. We consider the same model
as in [19, 8, 11], but we explicitly cast it in the multi-player/multi-session world.
In other words, we consider a network consisting of n players P1, · · · , Pn. Each
ordered pair of players (Pi, Pj) is connected by two unidirectional point-to-point
communication channels: (1) an insecure channel, e.g. internet or a Bluetooth or
a WiFi channel, over which an adversary has complete control by eavesdropping,
delaying, dropping, replaying, and/or modifying messages, and (2) a low-bandwidth
out-of-band authenticated (but not secret) channel, referred to as a SAS channel
from here on, which preserves the integrity of messages and also provides source
and target authentication. In other words, on the insecure channel, an adversary
can behave arbitrarily, but it is not allowed to modify (or inject) messages sent on

AUTHENTICATED KEY AGREEMENT WITH KEY RE-USE IN THE SHORT AUTHENTICATED STRINGS MODEL9

the SAS channel (which we’ll call SAS messages for short), although it can still
read them, as well as delay, drop, or re-order them.

3.2. SAS-MCA and its Security. Our security model follows the Canetti-
Krawczyk model for authenticated key exchange protocols [4], and the earlier work
of [2], which allows modeling concurrent executions of multiple protocol instances.
While in practice it will very often be the case (e.g. in the device pairing appli-
cation) that a single player is not supposed to execute several protocol instances
concurrently, a man-in-the-middle adversary can cause that several instances of the
protocol between the same pair of players are effectively alive, if he manages to force
device A to time-out and start a new SAS-AKA protocol session, while device B is
still waiting for an answer. In this case the adversary can choose which messages
to forward to device B among the messages sent on the different sessions started
by device A.

A SAS-MCA protocol is a “cross-party” message authentication protocol, ex-
ecuted between two players Pi and Pj , whose goal is for Pi and Pj to send au-
thenticated messages to one another. We denote the τ -th protocol instance run
by a player Pi as Πτ

i , where τ is a locally unique index. The inputs of Πτ
i are a

tuple (roleτi , Pj ,m
τ
i) where roleτi designates Pi as either the initiator (“init”) or a

responder (“resp”) in this instance of the SAS-MCA protocol, Pj identifies the com-
munication partner for this protocol instance, i.e. it identifies a pair of SAS channels
(Pi → Pj) and (Pi ← Pj) with an entity (Pj) with whom Pi’s application wants to
communicate, and mτ

i is the message to be sent to Pj in this session. With each
session Πτ

i there is associated a unique string sidτi , which is a concatenation of all
messages sent and received on this session, including the messages on the SAS chan-
nel. We denote input Pj on session Πτ

i as Peer(Πτ
i). We say that sessions Πτ

i and Πη
j

executed by two different players are matching if Peer(Πτ
i) = Pj , Peer(Π

η
j) = Pi,

and roleηj 6= roleτi . We say that the sessions are partnered if they are matching

and their messages are properly exchanged between them, i.e. sidτi = sidηj . By
the last requirement, and by inclusion of random nonces in the protocol, we ensure
that except of negligible probability each session can be partnered with at most one
other session. The output of Πτ

i can be either a tuple (Peer(Πτ
i),mτ

i , m̂
τ
i , sid

τ
i), for

some m̂τ
i , or a rejection. Similarly, Πη

j can either output (Peer(Πη
j),mη

j , m̂
η
j , sid

η
j)

or reject. The SAS-MCA protocol should satisfy the following correctness condi-
tion: If sessions Πτ

i and Πη
j are partnered then both sessions accept and output the

messages sent by the other player, i.e. m̂τ
i = mη

j and m̂η
j = mτ

i .
We model the security of a SAS-MCA protocol via a following game between

the challenger performing the part of the honest players P1, ..., Pn, and the adver-
sary A. We consider only the static corruption model, where the adversary does
not adaptively corrupt initially honest players. The challenger and the adversary
communicate by exchanging messages as follows: At the beginning of the interac-
tion, the challenger initializes the long-term private state of every player Pi, e.g. by
generating a public/private key pair for each player. In the rest of the interaction,
the challenger keeps the state of every initialized protocol instance and follows the
SAS-MCA protocol on its behalf. A can trigger a new protocol instance Πτ

i on
inputs (role, Pj ,m) by issuing a query launch(Πτ

i , role, Pj ,m). The challenger re-
sponds by initializing the state of session Πτ

i and sending back to A the message

10 STANISAW JARECKI AND NITESH SAXENA

this session generates. If A issues a query send(Πτ
i ,M) for any previously initial-

ized Πτ
i and any M , the challenger delivers message M to session Πτ

i and responds
by following the SAS-MCA protocol on its behalf, handing the response of Πτ

i on
M to A. However, if Πτ

i ’s next message is a SAS message, the challenger hands
this message to A and adds it to a multiset SAS(i, j), for Pj = Peer(Πτ

i), which
models the unidirectional SAS channel from Pi to Pj , denoted SAS(Pi → Pj).
A can issue a SAS-send(Πτ

j ,M) query for any message M in set SAS(i, j), where
Pi = Peer(Πτ

j). The challenger then removes element M from SAS(i, j) and delivers
M on the SAS(Pj → Pi) channel to Πτ

i . This models the fact that the adversary
can see, stall, delete, and re-order messages on each SAS(Pi → Pj) channel, but A
cannot modify, duplicate, or add to any of the messages on such channel.

We say that A wins in attack against SAS-MCA if there exists session Πτ
i which

outputs (Pj ,mi,mj , sid) but there is no session Πη
j which ran on inputs (∗, Pi,mj).

In other words, if Πτ
i outputs a message mj as sent by Pj but Pj did not send mj to

Pi on any session. We call a SAS-MCA protocol (T, ε)-secure if for every adversary
A running in time T , A wins with probability at most ε. Note that in the SAS-MCA
game the adversary can launch multiple concurrent sessions among every pair of
players. To make our security results concrete in the multi-player setting, we will
consider an (n, τt, τc)-attacker A against the SAS-MCA protocol, where the above
game is restricted to n players Pi, at mosts τt total number of sessions per player,
and at mosts τc sessions that can be concurrently held by any pair of players, i.e.
SAS(i, j) ≤ τc for all i, j. We note that the τc bound is determined by how long the
adversary can lag the SAS messages, how many sessions he can cause to re-start at
one side, and how long he can keep alive a session waiting for its SAS message on
the other side. In many applications it will be rather small, but it is important to
realize that in many applications it is greater than 1.

3.3. SAS-AKA and its Security. SAS-AKA is an Authenticated Key Agree-
ment (AKA) protocol in the SAS model. The inputs to the protocol are as in the
SAS-MCA but with no messages. Each instance Πτ

i outputs either a rejection or
a tuple (Peer(Πτ

i),K, sid), where K is a fresh, authenticated, and secret key which
Pi hopes to have shared with Pj = Peer(Πs

i), and sid is a locally unique session
id. An SAS-AKA scheme protects the secrecy of keys output by honest players on
sessions involving other uncorrupted player. The correctness property for a SAS-
AKA protocol is that if two sessions Πτ

i and Πη
j are partnereed then both sessions

accept and output the same key Kτ
i = Kη

j .
We model security of the SAS-AKA protocol similarly as in the SAS-MCA

case, by an interaction between the (n, τt, τc)-attacker A and the challenger that
operates the network of n players P1, ..., Pn. In this game, however, the challenger
has a private input of bit b. The rules of communication model between the chal-
lenger and A and the set-up of all honest players are the same as in the SAS-MCA
game above, and the challenger services A’s requests launch, send, and SAS-send in
the same way as in the SAS-MCA game, except that there’s no message in inputs to
the launch request. In addition, A can issue a query of the form reveal(Πτ

i) for any
Πτ
i , which gives him the key Kτ

i output by Πτ
i if this session computed a key, and

a null value otherwise. Finally, on one of the sessions Πτ
i subject to the constraints

specified below, the adversary can issue a Test(Πτ
i) query. If Πτ

i has not completed,
the adversary gets a null value. Otherwise, if b = 1 then A gets the key Kτ

i , and
if b = 0 then A gets a random bitstring of the same length. The constraint on the

AUTHENTICATED KEY AGREEMENT WITH KEY RE-USE IN THE SHORT AUTHENTICATED STRINGS MODEL11

tested session Πτ
i is that the adversary issues no reveal(Πτ

i) query and no reveal(Πη
j)

query for any Πη
j which is partnered with Πτ

i . After testing a session, the adversary
can then keep issuing the launch, send, SASsend and reveal commands, except it
cannot reveal the tested session or a session that is partnered with it. Eventually A
outputs a bit b̂. We say that an adversary has advantage ε in the SAS-AKA attack

if the probability that b̂ = b is at most 1/2 + ε. We say that the SAS-AKA protocol
is (T, ε)-secure if for all A’s bounded by time T this advantage is at most ε.

We note that the above model includes only static corruption patterns. Indeed,
the protocols we present here do not have perfect forward secrecy, since we are
interested in provable security of minimal-cost AKA protocols in which players
re-use their private key material across all protocol sessions.

4. Encryption-based SAS Message Authentication Protocol

Enc-MCA Protocol
(We denote as v̂ the value received by Pi/Pj if the value sent by Pj/Pi is denoted as v.)

Pi(Pj , (SKi, PKi),mi, init) Pj(Pi,mj , resp)

Pick Ri ∈ {0, 1}k, si ∈ {0, 1}l Pick Rj ∈ {0, 1}k, sj ∈ {0, 1}l

(ci, di)← com([mi|si|PKi|Ri])
mi,si,PKi,ci //

ejoo ej = Enc ˆPKi
([mj |sj |Rj])

[m̂j |ŝj |R̂j]← DecSKi
(êj)

di // R̂i ← open([m̂i|ŝi| ˆPKi], ĉi, d̂i)

SASi = Ri ⊕ R̂j
SASi +3 SASj = R̂i ⊕Rj

sidi = H(mi, si, PKi, ci, êj ,
SASjks sidj = H(m̂i, ŝi, ˆPKi, ĉi, ej ,

di, SASi, ˆSASj) d̂i, ˆSASi, SASj)

Output (Pi,mi, m̂j , sidi) if Output (Pj ,mj , m̂i, sidj) if

SASj = Ri ⊕ R̂j SASi = R̂i ⊕Rj

Enc-AKA Protocol

The protocol follows Enc-MCA with mi set to null and mj = K, for random K ∈ {0, 1}l
chosen by Pj . If its SAS test passes player Pj , resp. Pi, outputs mj [= K], resp. m̂j .

Figure 2. Encryption-based SAS-MCA protocol (Enc-MCA) and
SAS-AKA protocol (Enc-AKA)

In this section, we present a novel 3-round encryption-based bidirectional SAS-
MCA protocol denoted Enc-MCA. The protocol is depicted in Figure 2. It runs
between the initiator Pi, who intends to authenticate a message mi, and the re-
sponder Pj , who intends to authenticate a message mj . (SKi, PKi) denotes Pi’s
private/public key pair of an IND-CCA encryption scheme, which w.l.o.g. we as-
sume to be permanent. The protocol assumes the CRS model where the instance
KP of the CCA-Secure commitment scheme is globally chosen. The protocol is
based on the unidirectional message-authentication V-MA protocol of Vaudenay
[19], Figure 1. The only difference is that Pi adds to its message mi its public
key PKi and a random nonce si ∈ {0, 1}l, and the responder Pj sends its ran-
domness Rj encrypted under PKi, together with its message mj and a random

12 STANISAW JARECKI AND NITESH SAXENA

nonce sj ∈ {0, 1}l. In other words, Pi sends (mi, si, PKi) along with a commit-
ment ci to (mi, si, PKi, Ri) where Ri is a random k-bit bitstring. Pj replies with
an encryption of mj , sj , and a random value Rj ∈ {0, 1}k. Finally Pi sends to Pj
its decommitment di to ci, and Pi and Pj exchange over the SAS channel values
SASi = Ri ⊕ Rj , where Pi obtains Rj by decrypting ej , and SASj = Ri ⊕ Rj ,
where Pj obtains Ri by opening the commitment ci. The players accept if the SAS
values match, and reject otherwise. Pi and Pj also output session identifiers sidi
and sidj , respectively, which are outputs of a collision-resistant hash function H
on the concatenation of all messages sent (received resp.) and received (sent resp.)
on this session, including the messages on the SAS channel. (This is done only for
simplicity of security analysis: In fact the same security argument goes through if
sidi = sidj = [si|sj].) The following theorem states the security of this protocol
against an (n, τt, τc)-adversary:

Theorem 1 (Security of Enc-MCA). If the commitment scheme is (TC , εC)-
NM and the encryption scheme is (TE , εE)-SS-CCA, then the Enc-MCA protocol
is (T, p)-secure against (n, τt, τc)-attacker for p ≥ 2nτtτc(2

−k + max(εC , εE) and
T ≤ min(TC , TE)− µ, for a small constant µ.

Note on the Security Claim and the Proof Strategy. The nτtτc2
−k security

bound would be optimally achievable in the context of (n, τt, τc)-adversary because
this is the probability, for nτtτc � 2−k, that the k-bit SAS messages are equal on
some two matching sessions, even though the adversary subsitutes sender’s messages
on every session, since there are nτt sessions, each of which can succeed if the SAS
message it requires to complete is present among τc SAS messages produced by the
sessions concurrently executed by its peer player. We note that if adversary’s goal
is to attack any particular player and session, the same theorem applies with values
n = τt = 1.

However, the security bound nτtτc2
−k+1 we show is factor of 2 away from the

optimal. This factor is due to the fact that the reduction has to guess whether
the adversary essentially attacks the encryption or the commitment tool used in
our protocol. This also accounts for the essential difference between our proof
and those of [8, 11]. Even assuming the simplest n = τt = τc = 1 case, there
are several patterns of attack, corresponding to three possibilities for interleaving
messages and other decisions the adversary can make (in our case the crucial switch
is whether or not the adversary modifies the initiator’s payload m, s, PK). For
each pattern of attack, we provide a reduction, which given an attack that breaks
the SAS-MCA/AKA scheme with probability 2−k + ε, conditioned on this attack
type being chosen, attacks either the commitment or the encryption scheme with
probability ε.4 However, it is not clear how to use such reductions to show any
better security bound than q ∗ 2−k where q is the number of such attack cases.
Fortunately, we manage to group these attack patterns into just two groups, with
two reductions, the first translating any attack in the first group into an encryption
attack, the second translating any attack in the second group into a commitment
attack. Crucially, both reductions are non-rewinding, and hence they are security-
preserving. However, faced with an adversary which adaptively decides which group

4While some of these component reductions are identical to those shown for the same under-

lying SAS-MA protocol by Vaudenay in [19], others are different because they attack encryption
and/or commitment because we need to structure the attack cases differently.

AUTHENTICATED KEY AGREEMENT WITH KEY RE-USE IN THE SHORT AUTHENTICATED STRINGS MODEL13

his attack will fall in we still need to guess which reduction to follow, hence the
bound on attacker’s probability we show for our SAS-MCA/AKE scheme is a factor
of 2 away from the optimal.

Proof: We prove the above by showing that if there exists (n, τt, τc)-adversary
A which can attack the proposed protocol in time T < min(TC , TE) − µ and
probability p > 2nτtτc(2

−k + max(εC , εE)), then there exists either a T + µ < TC
adversary BC which breaks NM security of the commitment scheme with probability
better than 2−k + εC , or there exists a T + µ < TE adversary BE which wins the
SS-CCA game for the encryption scheme with probability better than 2−k + εE .
A succeeds if it can find a player Pi and a session Πs

i with a peer party Pj ,

such that Πs
i accepts message m̂j

(s) but the adversary never launches an instance

of Pj on message m̂j
(s). To achieve this A in particular has to route to Πs

i a SAS

message SAS
(s′)
j originated by some session Πs′

j s.t. Peer(Πs′

j) = Pi. By inspection

of the protocol, Πs
i accepts only if R

(s)
i ⊕ R̂j

(s)
= R̂i

(s′)
⊕ R(s′)

j , or equivalently,

SAS
(s)
i = SAS

(s′)
j .

Note that this condition must hold regardless whether the attacked session Πs
i

is an initiator or a responder. This allows us to simplify the notation and in the
remainder of the proof we assume Πs

i is the initiator, Πs′

j is the responder, and we

assume that either m̂
(s)
i 6= m

(s)
i or m̂

(s′)
j 6= m

(s′)
j .

Pi(Π
s
i) A Pj(Π

s′

j)

1
mi,PKi,ci // 5

m̂i, ˆPKi,ĉi //

2
êjoo 6

ejoo

3
di // 7

d̂i //

4
SASi +3 8

SASjks

Figure 3. Adversarial Behavior in the Enc-MCA protocol

In Figure 3 we show adversary’s interactions as a man in the middle between Πs
i

and Πs′

j . Note that A can control the sequence in which the messages received by
these two players are interleaved, and A has a choice of the following three possible
sequences:

Interleaving pattern I : (1 ≺ 5 ≺ 6 ≺ 2 ≺ 3 ≺ 4 ≺ 7 ≺ 8)

Interleaving pattern II : (1 ≺ 5 ≺ 6 ≺ 7 ≺ 8 ≺ 2 ≺ 3 ≺ 4)

Interleaving pattern III : (1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7 ≺ 8)

In each of these three message interleaving patterns we consider two subcases,
depending on whether the pair (m̂i, ˆPKi) that the adversary delivers to Πs′

j in
message #5 (see Figure 3) is equal to (m,

iPKi) that Πs
i sends in message #1.

Let’s denote the event that adversary succeeds in an attack as AdvSc, the
event that (m̂i, ˆPKi) = (mi, PKi) and that the attack succeeds as SM, the event

that (m̂i, ˆPKi) 6= (mi, PKi) and that the attack succeeds as NSM, and we’ll use
Int[1], Int[2], Int[3] to denote events when the adversary follows, respectively, the 1st,

14 STANISAW JARECKI AND NITESH SAXENA

2nd, or 3rd message interleaving pattern. We divide the six possible patterns which
the successful attack must follow into the following two cases:

Case1 = NSM ∨ (AdvSc ∧ Int[2]) & Case2 = SM ∧ (Int[1] ∨ Int[3])

We consruct two reduction algorithms, BC and BE , which attack respectively
the NM property of the commitment, and the SS-CCA property of the encryp-
tion scheme used in the Enc-MCA protocol. Both algorithms BC and BE use the
Enc-MCA attacker A as a black box, and both reductions have only constant com-
putational overhead which we denote as µ, hence both BC and BE run in time at
most T −µ < min(TC , TE). We will show that if Pr[Case1] ≥ p/2 then BC wins the
NM game with probability greater than 2−k + εC , and if Pr[Case2] ≥ p/2 then BE
wins the SS-CCA game with probability greater than 2−k + εE . This will complete
the proof because AdvSc = Case1∪Case2, and therefore if Pr[AdvSc] = p then either
Pr[Case1] ≥ p/2 or nτtτc) or Pr[Case2] ≥ p/2.

Both BC and BE proceed by first guessing the sessions Πs
i and Πs′

j involved in
A’s attack. The probability that the guess is correct is at least 1/nτtτc because A
runs at most nτt sessions and each session can have at most τc concurrently running
peer sessions. Since the probability of a correct guess is independent of adversary’s
view, for either i = 1 or i = 2, the probability that the guess is correct and Casei
happens is at least p/2 ∗ 1/nτtτc > 2−k + max(εC , εE). We show that if i = 1
then BC wins in the NM game, and hence its probability of winning is greater than
2−k + εC , and if i = 2 then BE wins the SS-CCA game, and hence its probability
of winning is greater than 2−k + εE .

It remains for us to construct algorithms BC and BE with the properties claimed
above. Algorithm BC , depending on the behavior of A, executes one of the following
sub-algorithms:

If (m̂i, ŝi, ˆPKi) 6= (mi, si, PKi) and A chooses interleaving pattern I or
III, then BC executes sub-algorithms, respectively, BC [1] and BC [3].
If A chooses interleaving pattern II, BC executes BC [2].

Otherwise, i.e. if A sends (m̂i, ŝi, ˆPKi) = (mi, si, PKi) and A follows
patterns I or III, BC fails.

Similarly, based on the behavior of A, algorithm BE proceeds in one of the
following ways:

If (m̂i, ŝi, ˆPKi) = (mi, si, PKi) and A chooses interleaving pattern I, BE
executes BE [1].

If (m̂i, ŝi, ˆPKi) = (mi, si, PKi) and A chooses interleaving pattern III,
BE executes BE [2].

Otherwise, i.e. if A sends (m̂i, ŝi, ˆPKi) 6= (mi, si, PKi) or A follows in-
terleaving pattern II, BE fails.

We show algorithms BC [1],BC [2] and BC [3] in Figures 7, 8, and 9, respectively.

Note that if (m̂i, ŝi, ˆPKi) 6= (mi, si, PKi) then A essentially attacks the V-MA
protocol of Vaudenay, because pair (mi, PKi) in the Enc-MCA protocol plays a role
of the message in the V-MA protocol, so this event in the Enc-MCA protocol is
equivalent to Pj accepting the wrong message in the V-MA protocol. Therefore,
the three reduction (sub)algorithms BC [1], BC [2], and BC [3], essentially perform
the same attacks on the NM game of the commitment scheme as the corresponding
three reductions given by Vaudenay for the V-MA protocol. The only difference

AUTHENTICATED KEY AGREEMENT WITH KEY RE-USE IN THE SHORT AUTHENTICATED STRINGS MODEL15

is that our reductions put a layer of encryption on the messages sent by Pj , as is
done in our protocol Enc-MCA. As in Vaudenay’s reductions, we extend the NM
game so that the challenger, at the end of the game sends to the attacker the
decommitment d corresponding to the challenge commitment c. Since this happens
after the attacker sends its R, the difficulty of the NM game remains the same.
However, if the BC reduction gets the decommitment d from the NM challenger,
the reduction can complete the view of the protocol to A, which makes it easier
(esp. in case of BC [4]) to compare the probability of A’s success with the probability
of success of BC .

For completeness, we show these three subcases of the reduction to an NM
attack in Appendix C. By inspection of the figures, note that each of these sub-
cases of the BC reduction at first follows the same protocol with the NM challenger,
and that BC can decide which path to follow, namely whether to switch to sub-
algorithm BC [1,2] or BC [3], based on the first message it receives from A. In this
case, BC switches to BC [3] if A first sends message êj , and otherwise BC follows
BC [1,2]. Similarly, in the latter case, BC switches to either BC [1] or BC [2] based on
A’s next response. Therefore the three pictures represent not different algorithms
BC [1-3] but just three subcases of a single algorithm BC .

By inspection of Figure 7, note that BC [1] wins in the NM game in the case of

event NSM ∧ Int[1]. Note that an extraction of ĉi is allowed because (m̂i, ŝi, ˆPKi)
is different from tag (mi, si, PKi) used in commitment ci. Similarly, by inspection
of Figure 8 , note that BC [2] wins the NM game in the case of the event that
interleaving pattern II is followed by A. Consequently, BC wins in any of these
cases as well. The case of BC [3] is slightly different: Here the probability that
A wins is actually at most 2−k unconditionally, as long the commitment scheme
is perfectly binding. Note that BC [3] has the same 2−k probability of winning in
this case because it just returns a randomly chosen R to the challenger. Since
event Case1 implies one of these three cases, and we have that BC wins in cases
(NSM ∧ Int[1]) ∨ Int[2], while in the remaining case (NSM ∧ Int[3]) the probability
that BC is greater or equal to the probability that A wins (given that this case
happens), it follows that the probability that BC wins is at least the probability
Pr[Case1], as required.

The construction of BE [1] and BE [3] are depicted in Figures 4 and 5 . The
construction works as follows. Receive the public key PK of the challenger. Then,
on receiving mi,mj from A, pick Ri ∈ {0, 1}k, compute (ci, di)← com(mi, PK,Ri)
and forward (mi, PK, ci) to A. Send mj to the challenger and forward the received
ciphertext ej = EncPK(mj , Rj) (where Rj is a random k-bit string picked by the

challenger) to A. When A sends êj = EncPK(m̂j , R̂j), query it to the decryption

oracle to obtain the plaintext (m̂j , R̂j). Note that since m̂j differs from mj , êj
must also differ from ej ,(NSM ∧ Int[1]) and therefore the query to the decryption

oracle is allowed. If A wins, then Rj must equal R̂j ⊕ R̂i ⊕Ri, which BE sends to
the challenger to win the challenger game. The same holds in the case of the BE [2]
reduction.

5. Encryption-based SAS Authenticated Key Agreement Protocol

We call our SAS-AKA protocol Enc-AKA. The protocol is very similar to the
Enc-MCA protocol. In fact Enc-AKA is simply an instance of Enc-MCA where Pi’s

16 STANISAW JARECKI AND NITESH SAXENA

message mi is set to null and Pj ’s message mj is a fresh random key which Pj picks
for each session. See Figure 2 for a description of both protocols.

Theorem 2 (Security of Enc-AKA). If the commitment scheme is (TC , εC)-
NM and the encryption scheme is (TE , εE)-SS-CCA, then the Enc-AKA protocol
is (T, p)-secure against (n, τt, τc)-attacker for p ≥ 2nτtτc(2

−k + max(εC , εE) and
T ≤ min(TC , TE)− µ, for a small constant µ.

Proof (Sketch): We show that if there exists a (n, τt, τc)-adversary A which
can attack the proposed protocol in time T ≥ min(tC , tE) − µ with probability p
better than 2nτtτc(2

−k + max(εC , εE)), then there exists an adversary BC which
can win the NM security game of the commitment scheme with a probability better
than 2−k+εC or there exists an adversary BE which can win the SS-CCA challenger
game of the encryption scheme with a probability significantly better than 2−k+εE .
A succeeds if it can find a pair of players Pi (initiator) and Pj (responder) both

running a “partnered” session with session id s, and can distinguish the session key
computed by either of them, from random. We will consider the case where A tests
the initiator and the case when A tests the responder separately below.

Both reduction algorithms, BC and BE start by guessing some session initialized
as (Pi, init, Pj , s) (there are at most nτt/2 of these). We’ll call this a (Pi, s) session,
but this choice determines Pj . Both reductions also pick one session at random
among all sessions of the form (Pj , resp, Pi, s

′), for the above Pi, Pj pair (that’s
additional τc guesses). Additionally, each reduction guesses whether it’s (Pi, s) or
(Pj , s

′) that will be tested. If A tests some other session than the one guessed by
BC or BE , either reduction outputs a random bit. Therefore, as in the reduction
of Enc-MCA protocol security, Theorem 1, the success probability of this reduction
deteriorates by a factor of nτtτc.

In either case (initiator or responder) considered below, the reduction considers
two subcases, and if it guesses which subcase it is prepared to handle; this results in
additional factor of 2 in the security degradation, thus leading to the p ≤ 2nτtτc ∗
[2−k +max(εC , εE)] bound on p.

(1) Consider the case when A attacks the initiator Pi. We first argue that

A cannot make the initiator Pi accept a key K̂(s) different from K(s)

picked by Pj on the session s. This is because the success of A in doing
so is clearly equivalent to an attack against Pj to Pi direction of the Enc-
MCA protocol shown in Figure 2 and follows directly from the reductions
BC [1], BC [2], BC [3], and BE [1] and BE [2] shown in the proof of Theorem
1. Note that these reductions will also need to simulate the responses
to the “reveal” queries issued by A. In the first three reductions, our
algorithm is able to perfectly simulate the responses to reveal queries by
responding with the session keys that it simply picks itself or it obtains
by following the protocol. While in the last two reductions, to answer the
reveal queries corresponding to sessions of the initiator Pi, the reduction
makes use of the decryption oracle; for any other session, where Pi is not
an initiator, “revelation” of keys is done by following the protocol.

From the above argument, it follows that Pi must output the same
key K(s) which was picked by Pj on session s. If A now succeeds in dis-
tinguishing this key from random, we reduce it to an attacker CE against
the SS-CCA game of the encryption scheme, as shown in Figure 6. The

AUTHENTICATED KEY AGREEMENT WITH KEY RE-USE IN THE SHORT AUTHENTICATED STRINGS MODEL17

A BE [1] SS-CCA

Challenger

PKioo Pick (SKi, PKi)
mi,mj // Pick Ri ∈ {0, 1}k,

si ∈ {0, 1}l
mi,si,PKi,cioo (ci, di)← com([mi|si|PKi|Ri])
m̂i,ŝi, ˆPKi,ĉi // Fail if

(m̂i, ŝi, ˆPKi) 6= (mi, si, PKi)
mj //

ejoo
ej=EncPKi

([mj |sj |Rj])oo pick Rj ∈ {0, 1}k,

sj ∈ {0, 1}l
êj // Fail if êj 6= ej

êj // [m̂j |ŝj |R̂j]← DecSKi
(êj)

di , SASi=Ri⊕R̂joo m̂j ,ŝj ,R̂joo

d̂i // R̂i ← open([m̂i|ŝi| ˆPKi], ĉi, d̂i)
R̂j⊕R̂i⊕Ri // Success if

R̂j ⊕ R̂i ⊕Ri = Rj
SASj=R̂i⊕Rjoo

Figure 4. Construction of BE [1] ((mi, si, PKi) = (m̂i, ŝi, ˆPKi),
interleaving case I)

simulation and “revelation” of keys of the sessions other than the “tested”
session, other than the ones corresponding to Pi and the ones where Pi
is not an initiator, are done by following the protocol. While to simulate
and answer the “reveal” queries corresponding to sessions of the initiator
Pi, the reduction makes use of the CCA decryption oracle.

(2) Consider the case when A attacks the responder Pj by succeeding in

sending a public key ˆPKi different from PKi. In this case, we reduce A
to an attack BC which executes sub-algorithms BC [1], BC [2] and BC [3],
based on the message interleaving patterns. This follows directly from the
constructions BC [1], BC [2] and BC [3], of the proof of the Theorem 1. Note
that on any session except the tested session, the reduction simply follows
the protocol and is therefore able to respond to the “reveal” queries by A
with the session keys that it outputs.

Now, consider the case when A attacks the responder Pi, but sets
PKi = ˆPKi. In this case, we reduce A to a CCA attacker similarly as
shown in Figure 6 and as we argued above for the case of A attacking the
initiator.

References

[1] Dirk Balfanz, Diana Smetters, Paul Stewart, and H. Chi Wong, Talking to strangers: Authen-
tication in ad-hoc wireless networks, Network and Distributed System Security Symposium,

2002.
[2] M. Bellare, R. Canetti, and H. Krawczyk, A modular approach to the design and analysis of

authentication and key-exchange protocols, Symposium on Theory of Computing, 2001.

18 STANISAW JARECKI AND NITESH SAXENA

A BE [3] SS-CCA

Challenger

PKioo Pick (SKi, PKi)
mi,mj // Pick Ri ∈ {0, 1}k,

si ∈ {0, 1}l
mi,si,PKi,cioo (ci, di)← com([mi|si|PKi|Ri])

êj // êj // [m̂j |ŝj |R̂j]← DecSKi
(êj)

di , SASi=Ri⊕R̂joo m̂j ,ŝj ,R̂joo
m̂i,ŝi, ˆPKi,ĉi // Fail if

(m̂i, ŝi, ˆPKi) 6= (mi, si, PKi)
mj //

ejoo
ej=EncPKi

([mj |sj |Rj])oo pick Rj ∈ {0, 1}k,
sj ∈ {0, 1}l

d̂i // R̂i ← open([m̂i|ŝi| ˆPKi], ĉi, d̂i)
R̂j⊕R̂i⊕Ri // Success if

R̂j ⊕ R̂i ⊕Ri = Rj
SASj=R̂i⊕Rjoo

Figure 5. Construction of BE [3] ((mi, si, PKi) = (m̂i, ŝi, ˆPKi),
interleaving case III)

A CE SS-CCA

Challenger

PKoo Pick (SK,PK)
(Pi,init,Pj),(Pj ,resp,Pi)//

si,PK,cioo Pick Ri ∈ {0, 1}k,
si ∈ {0, 1}l
(ci, di)←
com([si|PK|Ri])

ŝi,PK,ĉi // Pick Rj ∈ {0, 1}k,

sj ∈ {0, 1}l

Pick K0,K1 ∈ {0, 1}l
[K0|sj |Rj],[K1|sj |Rj]//

ejoo ej=EncPK([Kb|sj |Rj])oo Pick b ∈ {0, 1}
êj //
dioo
d̂i //

Test query //
K0,K1oo
b // b //

Figure 6. Construction of CE from A for interleaving case I

AUTHENTICATED KEY AGREEMENT WITH KEY RE-USE IN THE SHORT AUTHENTICATED STRINGS MODEL19

[3] M. Bellare, T. Kohno, and V. Shoup, Stateful public-key cryptosystems: How to encrypt with
one 160-bit exponentiation, ACM Conference on Computer and Communications Security,

2006.

[4] Ran Canetti and Hugo Krawczyk, Analysis of key-exchange protocols and their use for build-
ing secure channels., EUROCRYPT, LNCS, 2001, pp. 453–474.

[5] Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, and Adam Smith, Efficient and

non-interactive non-malleable commitment, EUROCRYPT, 2001, pp. 40–59.
[6] Christian Gehrmann, Chris J. Mitchell, and Kaisa Nyberg, Manual authentication for wireless

devices, RSA CryptoBytes 7 (2004), no. 1, 29 – 37.
[7] Michael T. Goodrich, Michael Sirivianos, John Solis andGene Tsudik, and Ersin Uzun, Loud

and Clear: Human-Verifiable Authentication Based on Audio, International Conference on

Distributed Computing Systems (ICDCS), July 2006, Available at http://www.ics.uci.edu/
ccsp/lac.

[8] Sven Laur, N. Asokan, and Kaisa Nyberg, Efficient mutual data authentication based on

short authenticated strings, IACR Cryptology ePrint Archive: Report 2005/424 available at
http://eprint.iacr.org/2005/424, November 2005.

[9] Sven Laur and Kaisa Nyberg, Efficient mutual data authentication using manually authen-

ticated strings, CANS, 2006, pp. 90–107.
[10] Sylvain Pasini and Serge Vaudenay, An optimal non-interactive message authentication pro-

tocol., CT-RSA, 2006.

[11] Sylvain Pasini and Serge Vaudenay, SAS-Based Authenticated Key Agreement, Workshop on
Practice and Theory in Public Key Cryptograph (PKC), LNCS, April 2006.

[12] Ramnath Prasad and Nitesh Saxena, Efficient device pairing using human-comparable syn-

chronized audiovisual patterns, Applied Cryptography and Network Security (ACNS), to
appear, 2008.

[13] Michael Rohs and Beat Gfeller, Using camera-equipped mobile phones for interacting with
real-world objects, Advances in Pervasive Computing (Vienna, Austria) (Alois Ferscha, Horst

Hoertner, and Gabriele Kotsis, eds.), Austrian Computer Society (OCG), April 2004, pp. 265–

271.
[14] Volker Roth, Wolfgang Polak, Eleanor Rieffel, and Thea Turner, Simple and effective defenses

against evil twin access points, ACM Conference on Wireless Network Security (WiSec), short

paper, 2008.
[15] Nitesh Saxena, Jan-Erik Ekberg, Kari Kostiainen, and N. Asokan, Secure device pairing based

on a visual channel (short paper), IEEE Symposium on Security and Privacy (S&P’06), May

2006.
[16] Nitesh Saxena and Borhan Uddin, Blink ’em all: Scalable, user-friendly and secure initial-

ization of wireless sensor nodes, Cryptology and Network Security (CANS), December 2009.

[17] Claudio Soriente, Gene Tsudik, and Ersin Uzun, BEDA: Button-Enabled Device Association,
International Workshop on Security for Spontaneous Interaction (IWSSI), 2007.

[18] Frank Stajano and Ross J. Anderson, The resurrecting duckling: Security issues for ad-hoc
wireless networks., Security Protocols Workshop, 1999, pp. 172–194.

[19] Serge Vaudenay, Secure communications over insecure channels based on short authenticated

strings, Advances in Cryptology - CRYPTO 2005, Lecture Notes in Computer Science, no.
3621, Springer Verlag, 2005, pp. 309 – 326.

Appendix A. IND-CCA Encryption

IND-CCA Encryption. We recall the standard notion of CCA-security of en-
cryption, formalized in conrete security terms for non-uniform algorithms, and we
sketch a proof of fact 1 of Section 2.

Definition 1. We call an encryption scheme (T, ε)-SS-CCA if for every T -
bounded algorithm A and every pair of messages m0,m1 it holds that p1 − p0 < ε
where

pb = Pr[ADecCsk(·)(pk, C) = 1 | (pk, sk)← KeyGen, b← {0, 1}
C ← Encpk(mb)]

20 STANISAW JARECKI AND NITESH SAXENA

where DecCsk(·) is a decryption oracle modified to output ⊥ on C.

Proof of Fact 1: Let M be any uniform distribution over d messages which is easy
to recognize and sample. (Fact 1 will be implied if M = Mm for some m and
d = 2k.) Let A be any T -bounded algorithm, and for any x, y ∈ M, define px,y
as the probability that A(Encpk(x)) = y, where the probability is taken over the
randomness of the key generation, encryption, and A. Note that without loss of
generality we can assume that A always outputs a message inM, and so for every x
we have

∑
y px,y = 1. Now, if encryption is (T, ε)-SS-CCA then for all x, y we have

that px,x < px,y+ε, or otherwise the SS-CCA definition would be violated form0 = x
and m1 = y. Summing over all x’s and y’s we get d ∗

∑
x px,x <

∑
x,y px,y + d2ε,

and since
∑
y px,y = 1 for all x, we get d∗

∑
x, x < d+d2ε, which implies the claim

because

Pr[A(C) = x | (pk, sk)← KeyGen, x←M, C ← Encpk(m)]

= 1/d
∑
x

px,x < 1/d+ ε

Appendix B. Difficulty in Extending the General Compilation
Theorem of

Pasini-Vaudenay

We give some intuition for the claim we make in the introduction, namely
that the general composition theorem given by Passini and Vaudenay [11], for
transforming KA protocols to SAS-AKA protocols given any SAS-MCA scheme,
cannot be applied, in general, to KA schemes which share state between sessions.
The theorem of [11] Consider a 2-round (non-authenticated) KA protocol. To
save round complexity in the compiled SAS-AKA protocol, we would like to make
the two messages generated by the KA protocol, mi of the initiator Pi and mj

of the responder Pj , inputs to the SAS-MCA scheme, where Pi goes first, and
mj is possibly based on mi. (The known 3-round SAS-MCA protocols allow the
responder’s message mj to be picked in the second round.)

Note that at the time Pj computes his response mj , following the algorithm
of the KA protocol on the received message mi, the message mi is not yet authen-
ticated by Pj . If the KA protocol does not share state between sessions, having
Pj compute mj on adversarially-chosen m̂i can possibly endanger only the current
session, and since the SAS-MCA subprotocol will eventually let Pj know that m̂i

was not sent by Pi, Pj will reject in this session anyway. (And so will Pi, because
we can assume that mj always contains the initator’s own message mi, or its hash.)

However, if Pj keeps a shared state between sessions then the information Pj
reveals in mj , computed on unauthenticated message m̂i, could potentially reveal
some secret information that endangers all other sessions of player Pj , or at least
all other sessions between Pj and Pi. It’s easy to create a contrived example of
a Key Agreement protocol which is secure in the static adverarial model when
implemented over authenticated channels but yields an insecure SAS-AKA protocol
when implemented with a SAS-MCA scheme in this fashion. For example, take any
Key Agreement protocol, KA, secure over authenticated links, let each player Pj
keep an additional long-term secret sj and compute a per-partner secret kij = Fsj (<
Pi >) where F is a PRF. If the initiator’s message mi contains a special symbol
⊥, Pj sends mj = kij to Pi in the open. Otherwise, Pj follows the KA protocol

AUTHENTICATED KEY AGREEMENT WITH KEY RE-USE IN THE SHORT AUTHENTICATED STRINGS MODEL21

to compute its response mj , except that it attaches to it the resulting session key
encrypted with a symmetric encryption scheme under kij . In the authenticated
link model, and considering a static adversary, an honest player never sends the ⊥
symbol. If the encryption is secure, encrypting the session key does not endanger
its security. Also, if F is a PRF then learning values of the F function under
indices corresponding to the corrupt players does not reveal any information about
the values of F on indices corresponding to the honest players. On the other hand,
this protocol is an insecure SAS-AKE protocol, because an adversary can inject
message m̂i =⊥ on the insecure channel on behalf of any player Pi, and since Pj
will reply with ki, this allows the attacker to compute the keys for all sessions, past
and future, between Pj and Pi.

This counter-example relies on an artificial KA protocol with shared session
state where interference with a single session between a pair of players trivially
reveals the keys on all sessions between the same players. However, this shows that
the compilation technique of [11] can apply only to KA protocols with no shared
state.

Of course, while this general compilation does not apply, a combination of
any particular SAS-MCA protocol and a KA scheme with shared state can still be
shown secure “from scratch”, and that, with some simplifications to the SAS-MCA
protocol made in the process, is exactly what we show in this paper.

Appendix C. Reductions BC [1-3] in the Proof of Theorem 1

Computer Science, University of California, Irvine
E-mail address: stasio@ics.uci.edu

Computer and Information Sciences, University of Alabama, Birmingham

E-mail address: saxena@cis.uab.edu

22 STANISAW JARECKI AND NITESH SAXENA

A BC [1] NM

Challenger

mi,mj // Pick (SKi, PKi);

Pick si ∈ {0, 1}l
mi,si,PKi // Pick Ri ∈ {0, 1}k

(ci, di)←
com([mi|si|PKi|Ri])

mi,si,PKi,cioo cioo
m̂i,ŝi, ˆPKi,ĉi // Fail if

(m̂i, ŝi, ˆPKi) = (mi, si, PKi)

or ĉi = ci
ej=Enc ˆPKi

([mj |sj |Rj])
oo Pick Rj ∈ {0, 1}k,

sj ∈ {0, 1}l

êj // [m̂j |ŝj |R̂j]← DecSKi
(êj)

σ=Rj⊕R̂j ,ĉi //
di , SASi=Ri⊕R̂joo [mi|si|PKi|Ri]←

open(ci, di)
dioo

d̂i // d̂i // [m̂i|ŝi| ˆPKi|R̂i]←
open(ĉi, d̂i)

Success if Ri ⊕ R̂i = σ

SASj=Rj⊕R̂ioo

Figure 7. Construction of BC [1] ((mi, si, PKi) 6= (m̂i, ŝi, ˆPKi),
interleaving case I)

AUTHENTICATED KEY AGREEMENT WITH KEY RE-USE IN THE SHORT AUTHENTICATED STRINGS MODEL23

A BC [2] NM

Challenger

mi,mj // Pick (SKi, PKi);

Pick si ∈ {0, 1}l
mi,si,PKi // Pick Ri ∈ {0, 1}k

(ci, di)←
com([mi|si|PKi|Ri)

mi,si,PKi,cioo cioo
m̂i,ŝi, ˆPKi,ĉi //

ej=Enc ˆPKi
([mj |sj |Rj])

oo Pick Rj ∈ {0, 1}k,
sj ∈ {0, 1}l

d̂i // R̂i ←
open([m̂i|ŝi| ˆPKi], ĉi, d̂i)

SASj=R̂i⊕Rjoo
êj // [m̂j |ŝj |R̂j]← DecSKi

(êj)

(c, d)← com([R̂j])

Fail if c = ci
σ=Rj⊕R̂i,c //

di , SASi=Ri⊕R̂joo dioo
d // R̂j ← open(c, d)

Success if R̂j ⊕Ri = σ

Figure 8. Construction of BC [2] (interleaving case II)

24 STANISAW JARECKI AND NITESH SAXENA

A BC [3] NM

Challenger

mi,mj // Pick (SKi, PKi)

Pick Ri ∈ {0, 1}k, si ∈ {0, 1}l
(ci, di)←
com([mi|si|PKi|Ri])

mi,si,PKi,cioo
êj // [m̂j |ŝj |R̂j]← DecSKi

(êj)

di , SASi=Ri⊕R̂joo
m̂i,ŝi, ˆPKi,ĉi // Fail if

(m̂i, ŝi, ˆPKi) = (mi, si, PKi)
M=0k // Pick Rj ∈ {0, 1}k

(c, d)← com([Rj])

Fail if c = ĉi
coo

σ=Ri⊕R̂j ,ĉi //

Pick sj ∈ {0, 1}l
doo

ej=Enc ˆPKi
(mj |sj |Rj)

oo [Rj]← open(c, d)

d̂i // R̂i ← open([m̂i|ŝi| ˆPKi], ĉi, d̂i)
d̂i // [m̂i|ŝi| ˆPKi|R̂i]←

open(ĉi, d̂i)

Success if Rj ⊕ R̂i = σ

SASj=Rj⊕R̂ioo

Figure 9. Construction of BC [3] ((mi, siPKi) 6= (m̂i, ŝi, ˆPKi),
interleaving case III)

