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ABSTRACT
Crypto Phones represent an important approach for end-to-end
VoIP security, claiming to prevent “wiretapping” and session hi-
jacking attacks without relying upon third parties. In order to es-
tablish a secure session, Crypto Phones rely upon end users to per-
form two tasks: (1) checksum comparison: verbally communicat-
ing and matching short checksums displayed on users’ devices, and
(2) speaker verification: ascertaining that the voice announcing
the checksum is the voice of the legitimate user at the other end.
However, the human errors in executing these tasks may adversely
affect the security and usability of Crypto Phones. Particularly,
failure to detect mismatching checksums or imitated voices would
result in a compromise of Crypto Phones session communications.

We present a human factors study, with 128 online participants,
investigating the security and usability of Crypto Phones with re-
spect to both checksum comparison and speaker verification. To
mimic a realistic VoIP scenario, we conducted our study using the
WebRTC platform where each participant made a call to our IVR
server via a browser, and was presented with several challenges
having matching and mismatching checksums, spoken in the le-
gitimate user’s voice, different speakers’ voices and automatically
synthesized voices. Our results show that Crypto Phones offer a
weak level of security (significantly weaker than that guaranteed by
the underlying protocols), and their usability is low (although might
still be acceptable). Quantitatively, the overall average likelihood
of failing to detect an attack session was about 25-50%, while the
average likelihood of accepting a legitimate session was about 75%.

Moreover, while the theory promises an exponential increase in
security with increase in checksum size, we found a degradation in
security when moving from 2-word checksum to 4-word checksum.

1. INTRODUCTION
Internet-based voice, video and text communication, collectively

referred to as VoIP, is one of the most popular mechanisms of on-
line communication deployed today. Unlike the traditional PSTN
(public-switched telephone) networks, VoIP communication may
be more easily susceptible to various forms of attacks, including
eavesdropping [1, 2] and session hijacking or man-in-the-middle
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(MITM) [34] attacks. As a prime example, governments, intelli-
gence agencies, private organizations, and even cyber criminals,
often “wiretap” VoIP calls, legally or illegally [5], for a variety
of purposes including crime investigation, political or military en-
deavors [16], and theft of private information from the victims, es-
pecially those who are famous, rich or powerful [7].

In light of these vulnerabilities, a fundamental goal is to secure,
that is, encrypt as well as authenticate all VoIP communication.
Ideally, this objective should be achieved without relying upon a
third-party (such as an online server) or a dedicated infrastructure
(such as a PKI) because such centralized services may themselves
get compromised or be under the coercion of law enforcement au-
thorities. Crypto Phones, such as Zfone [12], Silent Circle [11],
RedPhone and Signal [9], are mobile apps (or hardware devices)
claiming to offer precisely such end-to-end VoIP security guaran-
tees based on a purely peer-to-peer, user-centric mechanism. Re-
cent media reports seem to suggest that Crypto Phones are in high
demand both in the commercial and personal domains [10].

To secure the data (voice, video or even text) communication,
Crypto Phones require a cryptographic key, which is agreed be-
tween the end parties using a special-purpose key exchange proto-
col [15,33]. This protocol results in a short (e.g., 16-bit or 2-word)
checksum, called a Short Authenticated String (SAS), per party,
with the inherent property that if an MITM attacker is “present”
during the protocol, the checksums will not match. As a result,
to ensure that the MITM attacker did not interfere with the proto-
col messages and compromise the protocol security, Crypto Phones
rely upon end users to perform two crucial tasks (Figure 1 visual-
izes the benign setting):

1. Checksum Comparison: Verbally communicating and match-
ing short checksums displayed on each user’s device, and

2. Speaker Verification: Ascertaining that the voice announcing
the checksum is the voice of the legitimate user at the other end
of the call.

Theoretically, the SAS protocol deployed in a Crypto Phone ap-
plication limits the MITM attack success probability to 2−k for a
k-bit SAS checksum. For instance, for a 16-bit checksum, the pro-
tocol suggests that the MITM attacker cannot succeed with a proba-
bility better than 0.0015% (2−16). However, in practice, the human
errors in executing the checksum verification and speaker verifi-
cation tasks may adversely affect the security of Crypto Phones.
Particularly, failure to detect mismatching checksums, or imitated
voices would result in a compromise of Crypto Phones session
communications. In the first attack scenario (Figure 2), the MITM
attacker only manipulates the data communication during the pro-
tocol – this results in mismatching checksums as an inherent char-
acteristic of the protocol. If the users erroneously accept mismatch-
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Figure 1: Crypto Phones benign setting – original voices; matching
SAS (this is the setting subject to our usability assessment).

Step 1: Bob's and Alice's devices show their respective checksums as a result 

of SAS protocol execution. 

Step 2-3: Bob and Alice exchange their respective checksums via verbal 

communication. 

Step 4: Bob is asked to compare his checksum with the one provided by 

Alice plus verify Alice’s voice, and Alice is asked to compare her checksum 

with the one provided by Bob plus verify Bob’s voice, and accordingly 

accept or reject. In this case, both should be rejecting because checsums do 

not match (although voices are valid) thereby preventing the attack. However, 

if users erroneously accept mismatching checksum, the attack will succeed. 
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Figure 2: Crypto Phones MITM attack scenario 1 – original voices;
mismatching checksums. If users accept mismatching checksums, se-
curity is compromised.

ing checksums, the security will be compromised. In the second
attack scenario (Figure 3), the MITM attacker manipulates the data
communication as well as the SAS/voice communication. It inserts
its own voice, or an automatically generated voice mimicking the
user’s voice, so that the SAS checksums appear to be matching to
the users. If users accept these imitated voices, the security will
be compromised. For automatic voice generation, voice morph-
ing [3] could be used whereby an attacker collects a few minutes of
victim’s speech, and uses a voice converter tool to create arbitrary
checksums that were not earlier spoken by the victim.

In addition to undermining security, the human errors may neg-
atively impact the user experience of Crypto Phones in the benign
settings. That is, rejecting matching checksums spoken in legiti-
mate users’ voices would degrade overall usability, as users will
have to re-execute the protocol. Further, perhaps more seriously,
repeated executions may indirectly hamper overall security. Re-
peated protocol runs could frustrate the users to the point they may
start accepting even MITM attack instances, or may give up using
the Crypto Phones apps altogether, and rather resort to apps that
do not at all protect the communications. Similar (negative) secu-
rity consequences of poor usability have been noted in prior device
pairing research [24].

OUR CONTRIBUTIONS: In this paper, we investigate and empiri-
cally quantify the security and usability of Crypto Phones with re-
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Figure 3: Crypto Phones MITM attack scenario 2 – imitated (at-
tacker’s or auto-generated) voice; matching checksums. If users accept
imitated voices, security is compromised.

spect to users’ performance in the aforementioned checksum com-
parison and speaker verification tasks. Our human factors study
was conducted with a total of 128 Amazon Mechanical Turk par-
ticipants, and brings about three main contributions outlined below:

1. Study Design Emulating Real-World VoIP Setting: To
mimic a realistic VoIP scenario, we conducted our study us-
ing the WebRTC (web-based real-time communications) plat-
form where each caller made a call from a web browser to
an extension on our soft telephony switch, and got connected
to an IVR (interactive voice response) server, which acted as
the callee and played back the short authenticated checksums.
Throughout the experiment, the user was guided using spoken
instructions (via the IVR prompt) and displayed instruction on
her screen. All user interaction with the callee was through
the web server which received the web clicks and transformed
them into DTMF (dual-tone multi-frequency) tones acceptable
by the softswitch. Our study design and implementation is de-
scribed in Section 3.

2. Extensive Evaluation of Benign and Attack Scenarios: In
our study, we emulated the benign setting as well as different
attack scenarios for Crypto Phones (Figures 1–3). Each par-
ticipant was presented with several challenges corresponding
to matching and mismatching checksums, spoken in a legiti-
mate user’s voice, different speakers’ voices and automatically
synthesized voice. For the latter scenario, we used the voice
morphing technique to convert an attacker’s voice to a victim’s
voice. Our results show that Crypto Phones offer only a weak
level of security, significantly weaker than that guaranteed by
the SAS protocols. The overall average likelihood of failing
to detect an attack session was about 25-50%. On the posi-
tive side, we found that the usability of Crypto Phones might
be acceptable in practice (although not very high). The average
likelihood of accepting a legitimate session was about 75%, and
users took less than 5 seconds to complete their tasks and gen-
erally provided positive ratings to the system. Our results are
presented, statistically analyzed and interpreted in Section 4.

3. Effect of SAS Checksum Size: The length of the SAS check-
sum is a crucial security parameter for Crypto Phones. Theoret-
ically, the security of Crypto Phones should increase exponen-
tially with increase in the size of the checksum. For example,
the security level should increase by a factor of 65536 when



moving from 16-bit (2-word) checksums to 32-bit checksums.
In our study, we investigated the practical implications of the
checksum size on the security (and usability) level of Crypto
Phones. To achieve this, we compared the performance of two
groups of participants (64 per group), following a between-
subjects study design, who performed the checksum compari-
son and speaker verification tasks on 2-word and 4-word check-
sums. The results show degradation in overall security due to
the increase in human errors specifically in comparing longer
checksums. Our results are described in Section 4.2.3.

2. BACKGROUND AND RELATED WORK

2.1 Threat Model and SAS Protocols
A Crypto Phone SAS protocol between Alice and Bob is based

upon the following communication and adversarial model, adopted
from [33]. The devices being associated are connected via a re-
mote, point-to-point high-bandwidth bidirectional VoIP channel.
An MITM adversary Mallory attacking the SAS protocol is as-
sumed to have full control over this channel, namely, Mallory can
eavesdrop and tamper with messages transmitted. However, an ad-
ditional assumption is that Mallory cannot insert voice messages on
this channel that mimic Alice’s or Bob’s voice. In other words, the
voice channel (over which the SAS values are validated) is assumed
to provide integrity and source authentication.

A number of SAS protocols exist in the literature (e.g., [28, 33])
that a Crypto Phone implementation may adopt. SAS protocol is an
authenticated key exchange protocol, which allows Alice and Bob
to agree upon a shared authenticated session key after validating a
short string over an auxiliary channel (such as the voice channel
used in Crypto Phones). The protocol results in a short checksum
(e.g., 16-bit) per party – matching checksums imply successful se-
cure session establishment, whereas mismatching checksums im-
ply an MITM attack. As mentioned earlier, these protocols limit
the MITM attack success probability to 2−k for k-bit SAS data.
Once the SAS protocol and SAS validation process completes, all
data between Alice and Bob is secured (e.g., using authenticated
encryption). The session data may include voice, text or video data.
In fact, a Crypto Phone texting application may utilize the SAS ap-
proach to secure the text channel by means of SAS validation over
the voice channel, as employed by Silent Circle [11]. This means,
if the attack succeeds, all subsequent communication would be re-
vealed, and all text communications could also be manipulated.

2.2 SAS Encodings and Comparison
There are two types of SAS checksums commonly used in

Crypto Phones and device pairing applications. The first is the nu-
merical encoding where the checksum is usually presented in the
form of 6-8 digits numbers. The second is PGP words where SAS
is mapped to words (similar to NATO phonetic alphabet).

Compare-Confirm and Copy-Confirm are the two popular SAS
checksum comparison methods as introduced in [32]. In Compare-
Confirm, the SAS checksum is displayed on each party’s screen,
they verbally exchange their respective checksums, and both accept
or reject the connection by comparing the displayed and spoken
checksum. In Copy-Confirm, one party reads the encoded check-
sum to the other party, who types it onto his/her device, and get
notified whether the checksum is correct or not. The inaccuracy of
the users in reading, and typing the codes might lead to false accep-
tance of an MITM attack session, or false rejection of a legitimate
session. In this study, we are studying unidirectional Compare-
Confirm checksum comparisons, given this is the most commonly
deployed approach on Crypto Phones.

2.3 Speaker Verification Task
Speaker verification is the task of authenticating a claimed iden-

tity by means of analyzing a spoken sample of the claimant’s voice.
Manual speech perception and recognition is a complex task, which
depends on many parameters, including: the length of the sam-
ples, the number of samples, the source of the samples (familiar
vs. famous people), and combinations thereof [29]. There exists an
extensive literature in linguistics, analyzing human speech recog-
nition capabilities over different parameters [19, 22, 25, 29]. This
line of research shows that the shorter the sentence, the more hard
it may be to identify the source.

2.4 Voice Conversion
With the advancement in speech technology, there exists auto-

mated systems that can reproduce someone’s voice. Examples are:
text-to-speech tools, such as AT&T natural voices [4], voice syn-
thesis tools, such as ModelTalker [8], voice manipulation tools,
such as Voxal Voice Changer [13], and voice converters (or trans-
formers), such as Festvox [3]. Voice converters have the advantage
of producing more natural voices with less training data. They get
trained with relatively small training data, when compared, for ex-
ample, with the limited domain tools, which require samples of all
possible words or phrases or phoneme spoken by the target.

One of the most popular voice conversion tools is Festvox that
synthesizes the voice by modifying speech characteristic based on
the conversion rules. Festvox conversion uses Gaussian Mixture
Model (GMM) on joint probability density of source and target fea-
tures. The optimum mixture sequence is then determined by max-
imizing the likelihood function as described in [31]. We created
automated voices using the Festvox voice transformation tool and
we assume that in real life, the attacker can gain a similar morphed
voice quality as in our work, by collecting only a few minutes of
the victim’s voice using such off-the-shelf voice conversion tools.

2.5 Related Work
There exists prior work that studied the security or usability of

the checksum comparison or speaker verification tasks.
An extensive amount of research concentrates on the checksum

comparison task in the context of the proximity-based device pair-
ing application. A wealth of prior works exists that uses SAS pro-
tocols and different out-of-band (OOB) channels for the purpose of
device pairing (see survey study [23]). However, there is a signif-
icant difference between checksum comparisons in our work and
checksum comparisons in prior work. Device pairing involves de-
vices and their users who are physically nearby, whereas Crypto
Phones pertain to remote devices and users communicating over a
VoIP channel. Such remote interactions are clearly different from
physical interactions, and therefore users’ performance in Crypto
Phones checksum comparisons cannot be deduced from users’ per-
formance in device pairing checksum comparisons.

The speaker verification task in security applications has also
been studied previously. A recent work [30], investigated the fea-
sibility of a voice morphing1 and a voice reordering2 attack against
Crypto Phones. The user study reported in [30], evaluated the secu-
rity of Crypto Phones with a web-based survey that presented sam-
ples of the original speaker, different speakers and morphed voices

1A voice morphing attack is an attack against human voices in
which the attacker creates a synthesized voice that mimics a
speaker’s voice to fool the victims into accepting it as the original
speaker’s voice
2A reordering attack is an attack in which the attacker records in-
dividual words spoken by the victim from previous voice conversa-
tions and remixes them to build any utterance in the victim’s voice.



to the participants. The subjects were asked to rate the quality of
the recordings in terms of genuineness. They were also asked to
listen to some recordings to get familiarized with a given speaker’s
voice, and then recognize if a new recording corresponds to the
same speaker or not.

Although we study a similar attack in our study, there are sig-
nificant differences between our study and the “attack-only study”
of [30]. First, usability of the system was not assessed in [30],
while we evaluate both security and usability of Crypto Phones.
Second, the focus of their study was on the evaluation of the secu-
rity of Crypto Phones only with respect to the speaker verification
task, but not the checksum comparison task. Since the security
of Crypto Phones relies upon both tasks in conjunction, assessing
users’ security behavior in just one task is not sufficient. The third
characteristic of the study of [30] pertains to its survey-based na-
ture, where the primary task of the participants is speaker verifica-
tion. In contrast, in real world, the primary task of Crypto Phones
users is to make a phone call, and the secondary task is speaker ver-
ification (plus checksum comparison). Therefore, the attacks might
perform differently in real world where the user may want to com-
plete the lengthy security tasks rapidly (or ignore them completely
if possible), and move forward to the main primary task (voice con-
versation). Moreover, the noise associated with a VoIP channel is
different from a static clip on a web-page, even if the same record-
ing is played. Hence, users might perceive the voices differently
when played over the phone call. The fourth limitation of the prior
study stems from the relatively small sample sizes (only 30 partic-
ipants, each presented with 10 quality assessment and 10 speaker
verification challenges). Our study is performed with a total of
128 participants, each of whom was presented with 64 challenges.
Larger sample sizes provide larger confidence in the results.

An additional important difference from all of the related prior
work is that we study the security and usability of both tasks, check-
sum comparison and speaker verification, in conjunction. Prior
works either evaluated the former alone [23] or the latter alone [30].
Therefore, we investigate the usability of Crypto Phones as well
as the security of Crypto Phones as a whole (with respect to both
checksum comparison and speaker verification tasks) in an envi-
ronment where a real VoIP call was made by each participant, and
all the tests are performed over this call. Based on the discussion
above, the current work cannot not be directly derived from related
prior work, but we briefly compare our results with prior results in
Section 5.1.

3. STUDY PRELIMINARIES AND DESIGN
In this section, we describe our study goals and design based

on morphing attacks on word-based SAS. As reported in [30], the
reordering attack is effectively implementable against numerical
SAS. Therefore, we focus only on the morphing attack on word-
based SAS which is the most difficult attack for the users to detect.

3.1 Objectives and Metrics
Our study is designed to measure the security and usability of

Crypto Phones. The specific goals of the study are outlined below:

1. Robustness: How well do the users perform at the tasks of
checksum comparison and speaker verification together? For
usability assessment, we are interested in finding out how of-
ten users accept matching checksums spoken in an original
speaker’s voice. False Negative Rate (FNR) represents the
probability of rejecting such instances. False rejections force
the users to restart the protocol affecting the overall usability.
That is, the lower the FNR, the better the usability.

For security assessment, we are interested in determining how
often users accept mismatching or matching checksums in a
different speaker’s voice or a morphed voice. False Positive
Rate (FPR) denotes the probability of accepting such instances.
False acceptance implies the success of the MITM attacker and
a compromise of the security of Crypto Phones session com-
munications. The lower the FPR, the better the security. The
theoretical FPR for Crypto Phones, with a SAS of size k bits,
is 2−k, as stated earlier. For example, with a 16-bit SAS, the
theoretical FPR is 0.0015%, which should serve as a baseline
for the user-centric (practical) FPRs resulting from our study.

2. Efficiency: How long it takes for the users to complete the
checksum comparison and speaker verification tasks (benign
setting or attack scenario)? The delays incurred in performing
these tasks, referred to as time to completion, may impact the
overall usability of the system. In making their decisions, users
might hesitate or request the other party to repeat the checksum,
which may prolong the process and delay establishment of the
phone call. To capture this notion, we define a metric called
Replay Rate (RR), which is the fraction of the times the test
challenges were replayed by the participants while making their
decisions. Higher RR indicates lower efficiency.

3. User Perceptions: How usable do the users find the overall
Crypto Phone application requiring the checksum comparison
and speaker verification tasks? We are interested in determin-
ing as to how comfortable and confident people are in using the
application with respect to system complexity, need for train-
ing, support or maintenance. In our study, we measure user per-
ceptions using a standard scale questionnaire, called the Simple
Usability Scale (SUS) [18].

4. Effect of Checksum Size: How much does the checksum
size affect the security and usability of Crypto Phones? As
mentioned earlier, theoretically, the security of Crypto Phones
should increase exponentially with increase in the size of SAS.
For example, with a 16-bit SAS, the probability of the success
of an MITM is 0.0015%, while for a 32-bit SAS, the probability
degrades down to 2.33×10−8%. We are interested in quantify-
ing the practical change in FPR (and FNR) as well as comple-
tion time with increase in SAS size. In our study, we measure
this effect for 2-word (16-bit) vs. 4-word (32 bit) checksums.

3.2 Study Design and Implementation
In our study, we considered different aspects pertaining to the

usability and security of Crypto Phones, and designed and imple-
mented a system that closely simulates Crypto Phones voice call
initiation. Due to the popularity of web-based voice applications,
we implemented a web-based voice telephony system as the plat-
form for our study. Our system emulates Crypto Phones unidirec-
tional call establishment/authentication (such as a scenario where a
customer service call is being made by a user). Our results, how-
ever, easily extrapolate to a bidirectional setting, as discussed later
in Section 5.1.

3.2.1 Design Components
The main components of our study design are the telephony plat-

form and the web-based application, described below.

Telephony Platform: We set up a softswitch on an Amazon
Ubuntu Server 14.04 LTS (HVM) t2.micro3 instance. We ran
a FreeSWITCH 1.5.14b as the softswitch [6]. The open source
FreeSWITCH software supports VoIP protocols including Session
31 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GB memory
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Figure 4: The study involves three phases, pre-study, main study and
post-study. Extension number and IVR menu is participant-specific.

Initiation Protocol (SIP), IVR, and WebRTC (Web-based Real-time
Communications) that are essential components to connect the web
based clients to the switch. We modified the security group (virtual
firewall) of the Amazon EC2 instance to allow traffic to/from the
FreeSWITCH, and configured NAT functionality to support differ-
ent type of clients (participants machines) regardless of their ISP.

We configured the IVR system on FreeSWITCH to play the in-
structions, voice recordings of speakers and SAS challenges, based
on the commands it receives from the web-based application.To
better simulate the practical Crypto Phone application, we did not
use synthesized text-to-speech voice for IVR commands. That is,
IVR voice commands are either audio recordings of human speak-
ers or audio recordings of morphed voices.

Web-based Application: The web server that supports the appli-
cation was hosted on a Debian 7.4 with 2 x Intel(R) Xeon(TM)
CPU 3.20GHz and 3.87 GB of memory. The web-based applica-
tion developed in PHP, JavaScript and HTML5 was the connection
point of the participant and the experimental setup. It consisted of
demographical and SUS surveys, web-based WebRTC voice client
supporting DTMF, and a database client to connect to the database
server to read questions and store participants’ responses. The
PostgreSQL database was located on a Debian 7.4 machine with
1 x Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz and 512 MB of
memory. The database stored the list of SAS challenges, usabil-
ity (SUS) questions, answers to demographic and SUS questions,
and answers to the SAS challenges, time taken to answering each
questions, and number of replays required by each user to decide
to accept or reject a given SAS challenge.

The web-based voice client uses sipML5 open source HTML5
SIP client API [14]. SIP/SDP stack of the API is written in
JavaScript and the network transport uses WebSockets. Its media
stack depends on WebRTC which is natively provided by the web
browser. We developed our web-based voice client with JavaScript
using this API. Our program is supported on Chrome and Firefox
and is extensible to other browsers. To make and receive calls, first,
the SIPml media and signaling engine is initiated. Then, a SIP stack
is created that is the base object through which a user is registered
to the FreeSWITCH and can make/receive calls.

3.2.2 Study Flow and User Interactions
We published our study on Amazon Mechanical Turk, and re-

cruited 128 subjects who were asked to follow a link to our web-
based voice application (described in Section 3.2.1). To investi-
gate the effect of SAS size on usability and security, we grouped
the participants into two sets. 64 participants answered challenges
regarding 2-word (16-bit) SAS, and the other 64 participants an-
swered questions about 4-word (32-bit) SAS. Each participant was

assigned a unique ID which was later utilized for the payment and
data analysis purposes. The average duration of the experiment
was around 20 minutes. Our study was approved by the Institu-
tional Review Board (IRB) of our university and the participation
in the experiment was voluntary. The flow of the experiment and
the tasks that the users had to complete is depicted in Figure 4, and
described below.

• Pre-Study phase

First, the participants were presented with a welcome message
and instructed to use a Chrome or Firefox browser, and grant the
web application with access to their microphone for the duration
of the experiment in order to establish the call.

Second, the participants were asked to fill out a demographic
questionnaire. These questions polled for each participant’s age,
gender and education. An additional question was asked for par-
ticipants’ familiarity with VoIP applications. Also, they were
asked if their first language is English, and whether they suffer
from any hearing impairments.

• Main Study Phase

First, each participant was registered to a VoIP softswitch (de-
scribed in Section 3.2.1) through the web-based application, and
dialed an extension number to get connected to an interactive
voice response (IVR) module of the softswitch. All user inter-
action with the switch was performed through DTMF tones via
clicking buttons on the web-page.

Second, once the participants get connected to the IVR menu,
they were asked to get familiar with a single speaker’s voice. All
voice recordings and instructions were arranged as part of the
IVR prompts. There was no restriction on replaying the instruc-
tions and voice recording for familiarization. Written instruc-
tions were provided in each page to further support the voice
instructions in the IVR prompts.

Third, during the challenge phase, the participants were posed
with checksum comparison and speaker verification challenges.
A set of 2-word or 4-word SAS challenges (described in the next
subsection) related to that speaker were displayed on the user’s
web page (one at a time), and the IVR menu corresponding to
the displayed SAS challenge was played. The participant task
was to match the spoken words with the displayed words, and
click on a “yes” button, if the words matched and voice was of
the original speaker (previously familiarized voice). If the words
did not match, or the voice did not match the original speaker’s
voice, they should click the “No” button. The participant could
replay the SAS challenge for the second time, if he/she could not
validate the SAS in the first attempt.

• Post-Study Phase

First, the participants were presented with the SUS questionnaire
to rate their experience with the system and the underlying tasks.

Second, upon answering the SUS questions, the users were in-
structed to enter their Unique ID back in Amazon Turk for the
payment purpose. The answers and number of replays, as well
as the time taken by the user to complete each challenge was
stored in the database for later analysis.

Randomness with Latin Square Design: To provide randomness
throughout the experiment so as to minimize potential learning bi-
ases, the unique ID assigned to each participant was used to connect
them to a participant-specific IVR menu. We developed a Java ap-
plication that creates the IVR config file based on a 64 × 64 Latin
Square [20], to set unique IVR menus for each user.



Voice Dataset: To create the voice samples used in the main study
phase, we used the CMU ARCTIC US English single speaker
database. We picked two female speakers (CLB and SLT), which
we call female 1 and female 2, and two male speakers (BDL and
RMS), which we call male 1 and male 2, and made male to male
and female to female speaker conversions using the Festvox trans-
formation tool. In our experiment, we trained the system with first
100 sentences of ARCTIC data set and created morphed SAS chal-
lenges using the rest of the dataset. We performed 4 conversions
(male 2 to male 1, male 1 to male 2, female 1 to female 2, and
female 2 to female 1). In each conversion, the source voice is con-
sidered as the attacker’s voice and target’s voice is considered as
the victim’s voice. For the familiarization purpose, we played a 1-
minute recording of the target speaker (the victim) which was not
available in training and test dataset. We used the same dataset as a
possible large dictionary for SAS encoding.

3.3 SAS Challenges and Related Metrics
In the challenge phase of our study, we randomly displayed and

played sixteen checksum comparison and speaker verification chal-
lenges. These challenges emulate the benign scenario as well as
the MITM scenario for Crypto Phones. We define four categories
of challenges, each including 4 instances, as defined below and re-
peated the challenges for the four different speakers.

1. Original Voice; Matching SAS: In this set of challenges, the
original user says the same SAS as the one displayed on the
participant’s current screen. This set captures the success of
participants in recognizing a familiar (original speaker’s) voice
speaking a matching SAS (the benign case – Figure 1). A
“yes” answer to this challenge shows that the participant could
match the SAS and detect the familiar voice correctly. A “no”
answer shows the failure of the user in detecting a familiar
voice/matching SAS, and defines the FNR. Recall from Section
3.1 that high FNR reduces overall usability.

2. Original Voice; Mismatching SAS: In this scenario, the SAS
that the original user says is different phonetically distinct from
the SAS that is displayed on the screen. This test mostly shows
the accuracy of participants in comparing the checksums, i.e.,
detecting an MITM attack on the data channel that does not
manipulate the voice (Figure 2). A “yes” answer to this chal-
lenge shows that the participant could not detect the mismatch
between the two SAS values. Such instances of incorrectly ac-
cepting a wrong SAS contribute to the FPR, which defines at-
tack success rate (higher the FPR, more successful the attack).
A “no” answer, on the other hand, shows success of the par-
ticipant in comparing the checksums. We also studied how the
placement and number of incorrect SAS words in the checksum
would affect the FPR (i.e., 1st word mismatch, 2nd word mis-
match, etc.).

3. Different Voice; Matching SAS: In these challenges, the at-
tacker says the same SAS, as the displayed SAS, in his/her own
voice without any conversion. This test shows the success of
participants in distinguishing a different speaker’s voice (Fig-
ure 3). A “yes” answer to this challenge shows failure of the
participant in distinguishing the speaker (considering a differ-
ent speaker’s voice as the familiar voice) and contributes to the
FPR. A “no” answer shows success of the user in detecting the
different voice.

4. Morphed Voice; Matching SAS: In this set, the attacker says
the same SAS, as the displayed SAS, in the victim’s voice by
using the voice converter tool (morphing attack). This test
captures the success of participants in detecting a voice-based

MITM attack (Figure 3). A “yes” answer to this challenge
shows that the participants failed to detect the attack (consid-
ering a morphed voice as the familiar voice), and contributes to
the FPR. A “no” answer, in contrast, shows the success of the
participant in detecting the attack.

In our study, we considered errors related to both speaker verifi-
cation and checksum comparison tasks. To study the errors that are
most probably related to speaker verification, we displayed a SAS
on the user’s web-based application, and played the same SAS in
the original speaker’s voice, in a different speaker’s voice and in the
morphed voice. Here, since the displayed and spoken SAS match,
most probably the users’ answers are based on the voice (and not
the SAS). However, it could be the case that the user rejects a voice
because of the failure in matching the words. Similarly, to study the
errors that are most probably related to checksum comparison, we
displayed the SAS word on the web-based application and played
a different SAS spoken by the original speaker. Here, since the
voice is familiar (the original speaker’s voice) and only the words
do not match, most probably users’ responses are based on the SAS
(and not the voice). However, there might be some rejections that
are related to speaker verification, which means the user failed in
rejecting the mismatched words, but by mistake rejected the famil-
iar voice. Although we could have clearly asked users their rea-
soning behind rejecting the challenge (mismatch in the words, or
presence of an imitated voice), we preferred not to make such a
distinction. The reason is that we wanted to closely simulate a real
Crypto Phone application in which the only task of the user in the
SAS validation procedure is “accept” or “reject” (i.e., based on both
checksum comparison and speaker verification tasks together).

4. STUDY RESULTS

4.1 Participant Demographics
We recruited 128 M-Turk workers (as discussed in Section 3.2.2)

who reside in the US. Table 1 summarizes the demographic infor-
mation of the participants, collected via our demographic question-
naire. In both groups, the first language of most of the participants
is English. Most participants do not have any hearing impairment.
More than 50% of them use VoIP applications daily, and only a
negligible fraction has never used VoIP applications before. A ma-
jority of the participants are young, and well-educated with at least
a diploma. The various demographic attributes of our two groups
of participants are very similar, which allows us to meaningfully
compare the experimental results for 2-word and 4-word SAS fol-
lowing a between-subjects methodology.

4.2 Results and Analysis

4.2.1 2-word SAS Checksum
We first analyze the benign case, i.e., the one corresponding to

our first set of challenges (Original Voice; Matching SAS). The first
column of Table 2 summarizes these results. The FNR (averaged
over all participants and all the four speakers) is about 22%, which
may be acceptable in real-world applications. The time taken by
the participants to respond to these challenges is quite low, only
3.05 seconds on an average. If we look at each speaker individu-
ally, we see that the FNR, shown in the first column of Table 4, is
relatively low, varying between 17% to 26% for all speakers. Such
FNRs may be indicative of an acceptable (but not high) level of
usability in practice. Based on the Friedman test4, we did not find

4The Friedman test is a non-parametric statistical test used to detect
differences in treatments across multiple matched test samples.



Table 2: Speaker verification and checksum comparison results for the 2-word SAS experiment.
Speaker → Original Morphed Different Original

SAS → Matching Matching Matching Position of the Mismatched Word:
1st 2nd 1st & 2nd

FNR 22.31% FPR 43.55% 40.00% 30.00% 29.23% 25.96%
Time(s) mean
(std dev)

3.05
(1.93)

Time (s) mean
(std dev)

3.05
(1.36)

2.86
(1.16)

2.82
(1.44)

2.97
(1.55)

3.49
(2.42)

Replay Rate 3.94% Replay Rate 2.69% 2.31% 4.62% 4.23% 2.88%

Table 3: Speaker verification and checksum comparison result for the 4-word SAS experiment.
Speaker → Original Morphed Different Original

SAS → Matching Matching Matching Not Matching in:
1 word 2 words 3 words 4 words

FNR 25.00% FPR 38.92% 37.69% 51.51% 44.32% 32.20% 31.82%
Time(s) mean
(std. dev)

3.85
(1.83)

Time(s) mean
(std dev)

3.50
(1.70)

3.64
(1.68)

3.97
(2.08)

3.82
(2.33)

4.07
(2.34)

3.98
(3.43)

Replay Rate 7.77% Replay Rate 5.02% 5.40% 4.69% 4.69% 4.30% 7.03%

Table 1: Demographic information of users participating in the 2-
word and 4-word SAS experiments.

2-word 4-word
N = 64 N = 64

Gender
Male 58% 76%
Female 42% 24%

Age
18-24 years 28% 46%
25-34 years 40% 25%
35-44 years 22% 13%
45-54 years 9% 11%
55-64 years 1% 5%

Education
High school graduate or diploma 12% 32%
Some college credit, no degree 29% 16%
Bachelor’s degree 35% 37%
Master’s degree 22% 14 %
Doctorate degree 2% 2%

English as First Language
Yes 94% 92%
No 6% 8%

Hearing Impairment
No 97% 97%
Yes 3% 3%

Voice App Usage Frequency
Daily 54% 59%
Sometimes 42% 37%
Never 4% 4%

any statistically significant differences in the FNR corresponding
to different speakers in the first challenge.

Table 4: Speaker Verification result for each individual speaker in the
2-word SAS experiment.

Original
FNR

Morphed
FPR

Different
FPR

Male 1 17.69% 32.69% 27.69%
Male 2 22.31% 49.23% 31.54%
Female 1 26.92% 45.38% 48.08%
Female 2 22.31% 43.08% 52.69%

To measure users’ performance in the second scenario (Original
Voice; Mismatching SAS), we placed incorrect word(s) in the first
and/or second word of a 2-word SAS. The last three columns of
Table 2 summarize the results for this scenario. We see that the
average FPR of accepting an incorrect SAS is around 30%, which
may be considered high for applications demanding high security.

Users detected the checksums with two incorrect words slightly
better than those with one incorrect word, which means the number
of incorrect words in a SAS reduces the FPR. However, the Fried-
man test did not report any significant changes in the error rates

with the change in the number or position of the incorrect word
(e.g., whether the incorrect word is the first or the second word of
the checksum). The average time to answer these set of checksum
comparison questions is around 3.09 seconds, and the average rate
of replaying the samples (replay rate: RR) while performing the
comparison was around 3%. This low rate shows that the users do
not generally show interest towards requesting a replay.

Through our third category of challenges (Different Voice;
Matching SAS), we look at the instances of accepting a differ-
ent speaker’s voice. In a perfect world, the assumption of Crypto
Phones is that the users can distinguish a “different voice” 100%
of the times. However, the results of our study, presented in the
third column of Table 2, show that, on an average, the FPR is
40%. Moreover, this result depends on the similarity between the
attacker’s voice and the victim’s voice. It varies, from 53% for the
two female voices which are more similar to each other, to around
28% for the two male voices which are less similar. Column three
of Table 4 shows the FPRs corresponding to each speaker’s voice.
Friedman test did not report any significance in comparing FPRs of
the speakers with one another.

In our final set of challenges (Morphed Voice; Matching SAS),
the matching SAS is played-back in a morphed voice. The average
FPR across all users and all speakers is around 43%, as shown in
the column two of Table 2. Column two of Table 4 shows FPR
rates for morphing attack on different speaker’s voice. The FPR
varies between 32% for the conversion from male 2 to male 1 voice
to 49% for the conversion from male 1 to male 2 voice. Similarity
between the attacker’s and the victim’s voices before the conversion
highly affects quality of the conversion and as a result the related
FPR. For voices that are more similar, such as the two female voices
in our study, FPR of the different voice attack is better than the FPR
of the morphed voice. Ideally if the attacker can mimic the victim,
the attacked voice would sound more natural and more acceptable
by human users. However, if the attacker’s voice and the victim’s
voice are not similar to each other, such as in the case of the two
male speakers in our study, the attacker can take advantage of voice
morphing tools to construct a voice that mimics the victim’s voice.

Friedman test was conducted to compare the FPR result among
multiple speakers, and it rendered a Chi-square value of 0.002,
which was significant. Further, Wilcoxon signed-rank test5, con-
ducted using Bonferroni adjusted alpha levels of 0.0125 per test
(0.05/4), showed statistical significance with p-values of 0, 0.001
and 0.001 for the comparison between male 1 and other speakers,

5Wilcoxon signed-rank test is a non-parametric test suitable for
comparing matched samples which may not be normally dis-
tributed. All results of statistical significance in this paper are re-
ported at a 95% confidence level.



with small effect size for male 2 (r = 0.225) and trivial effect size
for female 1 and female 2 (r = 0.072 and r = 0.030, respectively).
However, the Wilcoxon signed-rank test did not report any statis-
tical significance when comparing FPRs for other set of speakers
with one another. This shows that different voices and conversions
might result in a better, or worse, attack success rate.

The result of the Wilcoxon signed-rank test to compare the two
voice imitation attacks averaged over multiple speakers (different
speaker voice vs. morphed voice) was not statistically significant.

Based on the Wilcoxon signed-rank test, we did not find any sta-
tistical significance in the replay rate and the time taken to complete
different type of challenges in the 2-word SAS.

4.2.2 4-word SAS Checksum
The error rates for the 4-word SAS experiment follows the same

pattern as 2-word SAS, as summarized in Table 3. FNR for re-
jecting a benign setting (Original Voice; Matching SAS) is 25%
(column one of Table 3). FPR under the voice imitation attacks
(Morphed/Different Voice; Matching SAS) is 38.92% and 37.69%,
respectively, varying among different speakers as shown in Table 5.
The results re-iterate that if the voice of the two speakers is more
similar before the conversion, the attacker can simply insert his/her
own voice into the SAS conversation. However, if the two voices
differ (such as in the case of our two male speakers), the attacker
can benefit from voice conversion.

Table 5: Speaker Verification result for each individual speaker in the
4-word SAS experiment.

Original
FNR

Morphed
FPR

Different
FPR

Male 1 23.11% 36.74% 27.65%
Male 2 19.32% 40.53% 28.03%
Female 1 25.76% 40.15% 42.80%
Female 2 31.82% 38.26% 52.27%

The Friedman and Wilcoxon signed-rank test report on statistical
significance in 4-word SAS experiment follows the same pattern as
the 2-word SAS experiment. That is, the statistically significant re-
sult was just reported for FPRs of the morphing attack when com-
paring male 1 speaker with other speakers.

We displayed one to four incorrect words in a 4-word SAS, and
compared the FPRs (Original Voice; Mismatching SAS). The last
four columns of Table 3 summarize the results for this scenario.
They show that the overall average FPR for accepting an incor-
rect SAS is around 40% in a 4-word SAS. Similar to the 2-word
SAS experiment, users detected checksums with higher number of
incorrect words slightly better than those with lesser number of in-
correct words. Friedman test was conducted to compare the FPR
for different number of incorrect words in SAS, and it rendered a
Chi-square value of 0, which was significant. Further Wilcoxon
signed-rank test, conducted using Bonferroni adjusted alpha levels
of 0.0125 per test (0.05/4), showed statistical significance with p-
values of 0.001, 0.007 when comparing 1 to 4, and 2 to 4, incorrect
words in a 4-word SAS, with small effect sizes (r = 0.273 and r =
0.172, respectively), while other comparisons were not significant.

The average time to answer the SAS mismatch questions is
around 3.96 seconds, and on average the replay rate was only
around 5%. Similar to 2-word SAS, we did not find any statisti-
cally significant differences in the replay rate and the time taken to
complete different type of challenges in the 4-word SAS.

4.2.3 2-word vs. 4-word SAS Performance
Theoretically, the security of Crypto Phones should increase (ex-

ponentially) with increase in the size of the SAS. This is based on
the assumption that human users’ accuracy in checksum compari-

son and speaker verification tasks is perfect. However, in real life,
users make mistakes in these tasks as our results presented so far
confirm. Intuitively, it is expected that people perform better in the
speaker verification task when faced with a longer SAS checksum.
This is because when they are presented with longer speech, they
may obtain more/better features of the speaker’s voice. This per-
spective is in line with prior literature in linguistics research [22]
which shows that people can recognize familiar voice samples with
a better accuracy when the duration of the sample is longer. In this
case, the security and usability of the system should increase, since
people can recognize the original and attacked samples with a better
accuracy. On the other hand, when the size of the SAS checksum
increases, people need to match a larger number of words, which
intuitively should increase the possibility of making a mistake in
the checksum comparison task.

Our results for the 2-word and 4-word experiments show the
above effects for the speaker verification and checksum compari-
son tasks. With reference to Tables 2 and 3, we see that while the
FPR in detecting morphed voice is around 43% in a 2-word SAS,
it is decreased to about 39% in a 4-word SAS. A similar effect is
seen for the different voice attack (about 40% for 2-word vs. about
38% for 4-word). This shows that users are slightly more success-
ful in detecting the morphed voice when the SAS becomes longer.
The result of the Mann-Whitney U test6, was not statistically sig-
nificant when comparing FPRs of morphing attack in the 2-word
and 4-word. However, users are less successful in the checksum
comparison as we move from a 2-word to a 4-word SAS. This is
confirmed via the Mann-Whitney U test, which shows statistical
significance yielding a p-value of 0.0002. Therefore, the overall
FPR – averaged over the speaker verification and checksum com-
parison tasks – increases when transitioning from 2-word to 4-word
SAS. Although we theoretically expected the length of the SAS to
have a positive impact on the security, in fact it decreases the secu-
rity since the users make more errors in detecting the mismatch.

The average time to answer a 2-word and a 4-word SAS check-
sum is 3.04 seconds and 3.83 seconds, respectively. This difference
is because of the longer speech duration in the 4-word SAS. Mann-
Whitney U test, comparing these average timings, shows statistical
significance with a p-value of 0.0244. However, in real life, this
difference may not matter much as both scenarios take less than 5
seconds for the SAS validation task. We do not notice a significant
difference in the replay rate for the two SAS sizes, although on
average the number of replays in the 4-word SAS is slightly more.

4.3 SUS Feedback
The usability of a system involves several aspects such as ef-

fectiveness and efficiency of the system, and users’ experience
with, and satisfaction of, the system. In general, usability shows
how much effort and time users should expend to achieve their de-
sired objectives and have a satisfactory experience. Based on this
definition, a simple questionnaire, called System Usability Scale
(SUS) [18], was designed to measure the usability of an engineered
system. SUS is a 5-point Likert scale consisting of ten questions,
each with 5 possible answers (1 represents strong disagreement and
5 represents strong agreement), covering various aspects of the us-
ability of the system, such as the need for support and training, and
system complexity. SUS score is calculated between 0 and 100,
and a higher score means better usability.

At the end of our study, each participant filled out the SUS ques-
tionnaire, rating his/her perception of the experiment underlying
our web-based VoIP system. The average SUS score for the 2-word
6Mann Whitney U test is a non-parametric test suitable for data
which may not be normally distributed.



SAS was 72.23 (std dev = 18.04), and the average SUS score for the
4-word SAS was 75.04 (std dev = 19.52). Considering that industry
averages for SUS scores tend to hover in the 60–70 range [26], our
results show that users found both systems to be usable. The stan-
dard deviation in our study shows that the SUS scores almost fall
between 55 and 95 which is generally considered to be “good” [17].
The result of comparing 2-word and 4-word SUS was not statisti-
cally significant based on the Mann-Whitney U test.

5. DISCUSSION

5.1 Summary and Key Insights
Our study provides several insights into the security and usabil-

ity of Crypto Phones. The first insight pertains to the implication of
SAS sizes. Although, theoretically, a longer SAS should result in
higher security (1/232 versus 1/216 probability of the attack suc-
cess for 2-word and 4-word SAS), our evaluation shows that in real-
life, human errors in recognizing the speaker and comparing the
checksums translate into a much lower security. Although longer
SAS slightly decreased the error rate (FPR) in the speaker verifica-
tion task, it significantly increased the error rates in the checksum
comparison task. Therefore, the overall security of a 4-word SAS
actually decreased compared to a 2-word SAS. Moreover, the time
taken to validate the 4-word SAS is longer, which might negatively
affect the usability of the system.

Our second key result relates to the difference between the two
types of voice imitation attacks (morphing attack and different
speaker attack). Although, on average, the morphing attack is only
somewhat better than the different speaker attack, the result varies
significantly among multiple speakers. The attacker, whose voice
is more similar to the victim’s voice, has a better chance in per-
forming the voice imitation attack using his/her own voice than us-
ing voice conversion tools. The reason is that, in spite of all the
advancement in speech synthesis, the flow and naturalness in the
“human voice” is still better than that produced by the machines.
In our experiment, the FPRs of the morphed voice and the different
speaker voice for the two male speakers are in line with the ones
reported in [30] (i.e., FPR is lower for the different speaker attack
compared to the morphing attack).

Third, the original speakers’ voices were shown to be fairly accu-
rately recognizable by the users (as demonstrated by our relatively
low FNRs). However, we should mention that we picked all the
recordings of the same speaker in a single session (with the same
ambient noise and volume) for the familiarization clip as well as
for the SAS challenges. The idea behind this selection was the that,
if the end parties do not know each other before the call to authenti-
cate the other party (such as a customer service call, like in our sce-
nario where amazon Mechanical Turk users called the IVR), they
should rely only on the current session and ensure that the voice
that speaks the SAS checksum is the same voice that speaks the
rest of the conversation. The users who are already familiar with
each other prior to the call might perform better in real life.

Fourth, from a qualitative perspective, the SUS responses show
that both 2-word and 4-word SAS checksums are both generally ac-
ceptable and usable. Our participants found the systems to be easy
to use and less complex, and did not feel they would require high
level of training and support in order to use them in practice. The
user-friendly GUI, clearly written and spoken instructions, and reli-
able voice and web servers, as well as the demographics of the sub-
jects may have contributed to this high usability. The demographic
information shows that our subjects were mostly young and well-
educated, and had prior experience with VoIP applications. Other
users (older, less educated, or those with less expertise in VoIP ap-

plication) might find the system less or more usable.
Although we evaluated Crypto Phones SAS validation process

on a unidirectional channel, our results extend to the bidirectional
case. In a bidirectional setting, both parties need to confirm the
SAS checksums, hence the security of the system would actually
increase, while the usability of the system will decrease. If we
assume that the probability of the attack failure in one direction is
60% (a realistic number based on our evaluation), then the probabil-
ity that the system may defeat the attack in both directions is 84%.
However, based on the current study, around 75% of the legitimate
calls were accepted, and, therefore, if we want both sides to accept
the connection, only around 56% of the valid sessions will be ac-
cepted. Recall that the more frequently people reject valid calls, the
more frequently they need to redial, which may further reduce the
usability level directly, and the security level indirectly. Although a
two-sided attack in a bidirectional case is less successful, note that
the attacker can still compromise only one side for a successful at-
tack. In this case, the probability of attacking either Alice or Bob
is increased to 64%. After establishing the connection (with Bob
for example), the attacker might continue with voice conversation
(by creating arbitrarily long speech in Alice’s voice using voice
morphing techniques [27]), or insert text (in Crypto Phones text
communications) on behalf of Alice over the established channel.

The results show that while out-of-band device pairing is some-
how successful in a face to face setting (around 15% failure as
reported in [23]), SAS validation is more challenging in Crypto
Phones as “remote” users should compare the checksum over the
same VoIP channel. Also, the results show that in our setting com-
bining the two task of checksum comparison and speaker verifi-
cation (which is similar to a practical Crypto Phone application)
makes the verification slightly more difficult compared to [30]
where the only task of the participants is speaker verification.

5.2 Potential Limitations
The popularity and ease of use of the web-based applications

might have given our setup a high usability. We have not stud-
ied other forms of Crypto Phones applications, but we believe that
their security and usability should be similar to the web-based ap-
plication. Unless the user performs a “hands-free” call, she may
not be able to easily compare the SAS on her phone’s display with
the one spoken by the other party. This in practice might reduce
the security (increase the possibility of making errors) and usabil-
ity (looking at the screen and holding the phone next to the ear
might be difficult). One possible limitation of our work relates to
the use of IVR rather than a human user. One real-life application
of IVR in Crypto Phones is support or service centers in which the
customer calls a number, is responded by IVR machines and might
be asked to validate a SAS in order to secure the communication.
Apart from this application, we believe using natural human voices
as IVR commands (rather than mechanical text-to-speech voices)
may address this limitation of our work.

Similar to other studies which recruit remote participants, we
could not fully monitor the authenticity of the responses. We did
not include dummy questions and trusted the subjects that their an-
swers were honestly provided as per the given instructions. We
did discard a few instances where the participants clicked on the
same answer for all type of challenges and SUS questions, and col-
lected new data to replace such participants. Also, we noticed that
average time to complete the study is more or less similar among
all participants, which could be a sign of validity of the responses.
Nevertheless, the high number of subjects involved in our study
still help us to ignore possible “random” or “dishonest” answers,
and may provide a high confidence in the final aggregated results.



5.3 Potential Defenses and Future Work
Improving both the security and usability of Crypto Phones

seems like a challenging endeavor. One natural goal should be to
improve the users’ performance in the checksum comparison task.
In our study, we used the Compare-Confirm approach for checksum
comparisons, given that this is the most popular approach currently
employed in Crypto Phones applications. An alternative approach
is Copy-Confirm [32]. The Copy-Confirm method may reduce FPR
(enhance security) but may increase FNR (degrade usability) [32]
especially for word-based SAS (as opposed to numeric SAS) be-
cause typing the words may be more error-prone.

Another direction to improve the checksum comparison task per-
formance might be to make the task more engaging for the users.
The work presented in [21] explored a scoring-enhanced compari-
son approach and showed that it improved the security, and usabil-
ity in the context of device pairing application. Further investiga-
tion is necessary to evaluate this system in a remote VoIP setting.

Since the attacks against Crypto Phones are largely a conse-
quence of human errors, it seems reasonable to provide sufficient
instructions and training to those who use these applications. The
users who are trained and aware of the risks associated with the
leakage of their sensitive information might protect themselves
better against such attacks. However, administering such training
might pose a significant challenge in practice.

Alternatively, the human reliance in the Crypto Phones applica-
tions could be reduced. As suggested in [30], the task of speaker
verification could be performed automatically using a voice bio-
metrics system. However, current voice biometrics systems may
not offer viable usability and security especially when working
with short spoken words. Further research is necessary to evalu-
ate such automated solutions in the context of Crypto Phones.

6. CONCLUSIONS
In this paper, we comprehensively evaluated the security and us-

ability of mobile Crypto Phones, a popular decentralized approach
to establish end-to-end VoIP security. These apps are being rapidly
deployed in many real-world personal and business settings in a
hope to protect users from the prying eyes of eavesdroppers. On
the negative side, the results of our study suggest that – because
of the human errors associated with the checksum comparison and
speaker verification tasks – the security offered by Crypto Phones
falls significantly short of the theoretical guarantees provided by
the underlying cryptographic protocols. For instance, for a 2-word
(16-bit) checksum, the attacker would succeed with a probability
about 30% in practice as shown by our study, while the theory sug-
gests that the attacker cannot do better than 0.0015% – a security
degradation by a factor of 20,000. Moreover, while the theory guar-
antees that increasing the checksum size, from 2-word to 4-word,
will increase the security exponentially, by a factor of 65536 (216),
we saw that the attacker success probability increases (from about
30% to 40%). This situation emerged because, as the checksums
became longer, validating speakers became slightly easier (as users
could get more cues to identify a malicious voice), but at the same
time comparing checksums became much harder.

On the promising side, the relatively positive user perception
(SUS scores over 70 out of 100) bode well for the usability and
acceptability of Crypto Phones. However, a 75% of accuracy under
the benign setting does not show high performance of the users.
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