
On the Limitations of Query Obfuscation Techniques for
Location Privacy

Sai Teja Peddinti
Computer Science and Engineering

Polytechnic Institute of New York University
Brooklyn, NY USA

psaiteja@cis.poly.edu

Nitesh Saxena
Computer and Information Sciences
University of Alabama, Birmingham

Birmingham, AL USA
saxena@cis.uab.edu

ABSTRACT
A promising approach to location privacy is query obfusca-
tion, which involves reporting k − 1 false locations along
with the real location. In this paper, we examine the level of
privacy protection provided by the current query obfuscation
techniques against adversarial location service providers. As
a representative and realistic implementation of query obfus-
cation, we focus on SybilQuery. We present two types of at-
tacks depending upon whether or not a short-term query his-
tory is available. When history is available, using machine
learning, we were able to identify 93.67% of user trips, with
only 2.02% of fake trips misclassified, for the security pa-
rameter k = 5. In the absence of history, we used trip cor-
relations to form a smaller set of trips effectively increasing
the user query identification probability from 20% to about
40%. Our work demonstrates that the use of aggregate sta-
tistical information alone is not sufficient to generate simu-
lated trips. We identify areas for improvement in the existing
query obfuscation techniques.
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INTRODUCTION
Location based services (LBSs) are quite common on mod-
ern mobile and wireless devices, ranging from smart phones
to automobile systems. These services open up new oppor-
tunities for ordinary end users. They can be used for navi-
gation from current location to a given destination, locating
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nearby businesses, restaurants or friends, and receiving ge-
ographic alerts (e.g., about traffic or weather conditions) or
advertisements, to name a few. The LBSs are clearly very
appealing, but unfortunately they violate users’ location pri-
vacy. These services require the users to transmit their loca-
tions to the server in a sporadic or periodic manner, depend-
ing on the service being offered. This enables the service
provider to track the whereabouts of the user, map user’s
daily commute, identify his home or work locations, thereby
gaining insight into the user’s personal life. Consequently,
privacy conscious users do not wish to disclose their loca-
tions to the LBSs. This seriously limits the acceptance of
LBSs, which is reflected in the low adoption of E-ZPass [4]
toll collection, and the New York City cab drivers’ denial of
equipping all cabs with GPS tracking devices [5].

Many techniques have been proposed to protect the loca-
tion privacy of the end users. A straight-forward approach is
to strip the user queries of any user identifying information
(i.e., anonymizing them) and assigning a pseudonym. Such
methods have been proven to be ineffective allowing the at-
tacker to locate the home of a user from the pseudonymized
GPS tracks [19]; when associating this information with the
street address listings, one can obtain the name of the in-
dividual [21]. Even when completely anonymized queries
were used with no pseudonyms, it has been shown that all
the queries belonging to a trip could be related, effectively
forming a pseudonym for each trip [16]. Another privacy-
preserving approach is to distort the actual users locations by
adding random noise [9]. However, the amount of random
noise necessary to prevent tracking attacks is large [21].

Instead of adding random noise, one can degrade the lo-
cation information to query for a region, so that the con-
dition of k-anonymity is satisfied. In these k-anonymity
based spatial cloaking [15, 6, 12] methods, regions are pre-
sented to the LBS instead of actual locations, such that at
least k users of the service exist in each region. When the
LBS returns the response for the entire region, based on
each user’s location the results are filtered and forwarded
appropriately. As the LBS only sees a region containing
k users, it does not have any information as to where the
users might be within the region. Here the value k is the se-
curity parameter, which determines the level of anonymity.
These k-anonymity techniques, however, rely on the pres-
ence of a third party server, which handles the generation of
the cloaked regions and demultiplexing of the returned re-



sponses. Moreover, the cloaking and uncloaking needs to
be performed for every user query, resulting in performance
and scalability issues. The third-party server must be care-
ful while generating the cloaked regions so as to prevent any
correlation attacks [13], whereby the LBS can break the k-
anonymity by keeping track of the regions sent by the server.
Furthermore, the third party servers become single points of
failure and easy attack targets.

As an alternative, peer-to-peer solutions to location privacy
have been developed. These require the participation of at
least k peers to ensure k-anonymity [7, 14]. However, re-
lying on other users is not always possible and reduces the
autonomy of the system. Private Information Retrieval (PIR)
protocols, such as [13, 20, 18], offer provable privacy pro-
tection to the user. However, current PIR protocols are not
feasible to be deployed in practice due to their high compu-
tation and communication overhead.

The focus of this paper is on decentralized and autonomous
k-anonymity based solutions [22, 26]. In these solutions,
several false queries are posed to the LBS, along with the
real user query. The LBS responds to each of these queries,
and the user simply selects the response matching the real
query and discards all other responses. By ensuring that a
sufficient number of these fake queries are posed and that
they look realistic, the probability of a LBS identifying the
real query could be reduced to a desired level. In contrast
to the aforementioned solutions, such query obfuscation ap-
proaches are more attractive because they do not require any
infrastructural changes, third party servers or rely on other
users, and are available for ready deployment by privacy
conscious users.

Our Contributions
A higher level goal of our paper is to examine the effec-
tiveness of the decentralized query obfuscation approach in
protecting users’ privacy against adversarial LBSs. Specif-
ically, we consider two types of adversaries with different
capabilities, trying to identify the real user location queries
from the pool of fake queries and user queries. The first LBS
adversary (referred to as the Strong Adversary) has access
to the user’s previously recorded short-term location query
history. This history does not constitute any out-of-band in-
formation, but rather only the previous queries posed by the
user that the LBS recorded. The second adversary (referred
to as the Weak Adversary) does not have any query history
pertaining to the user.

Of the two currently available query obfuscation tools [22]
[26], we concentrate on SybilQuery [26]; however, we be-
lieve that our results could be extended to the other tool as
it is based on similar principles. In order to begin our evalu-
ation, we first recreated the SybilQuery system as described
in [26, 25] using traces of 540 cabs obtained from [3]. We
then selected mobility traces of 85 cabdrivers over a period
of one month, and treated them as users of SybilQuery. We
collected the pool of fake/sybil queries and real queries pro-
duced by the tool, for each of these users when their mobility
traces were simulated. We then evaluate the feasibility for

an adversarial location service provider to identify the user
queries from the query pool.

Since the strong adversary has access to the user location his-
tory, we applied machine learning to identify the real queries.
The results of our classification attacks indicate that Sybil-
Query obfuscation approach is fairly weak. We show that,
when using k = 5, on an average user trips could be iden-
tified with accuracies as high as 93.67% and rate at which
sybil trips are misclassified as user trips is about 2.02%. Al-
though we found that increasing the security parameter k
does provide better privacy, the performance of the classi-
fiers only degrades gradually with this parameter. For exam-
ple, for one of our classification approaches, the user accu-
racy only decreased from about 80% to 63%, and the sybil
misclassification rate changed from about 6% to 5%, when
k was changed from 5 to 11. In the context of the weak
adversary, since the user location history is not available,
we correlate trips to filter out few sybil queries. Using our
trip correlation attacks, we were able to reduce the problem
size to a smaller set, effectively increasing the average user
query identification probability from 20% to about 40%, for
k = 5.

Our results demonstrate that aggregate statistical informa-
tion, used for generating the sybil/fake queries, is not suffi-
cient to hide the user queries, if the adversary has access to
the location history. This is because the user query patterns
tend to stand out among the pool of sybil and user queries.
Moreover, the sybil queries need to be consistent across trips
to prevent correlation attacks. On a broader note, we believe
that these insights drawn from our work will help guide the
design of future query obfuscation tools, better resistant to
automated privacy attacks. In fact, we identify areas for im-
provement in the existing query obfuscation tools, making
them more robust to such automated attacks.

SYBILQUERY BACKGROUND
SybilQuery is a k-anonymity based location anonymization
tool that is decentralized and works from the client side with-
out any server side modifications. It works by generating
k − 1 statistically similar sybil location queries for every
user query to the LBS. All the k location queries are sent to
the LBS at the same time.

In the SybilQuery model [26], an LBS is a database that
stores < l, v > tuples, where l is a geographic location and
v represents value(s) associated with that location. When
a user queries the LBS with a location, the values associ-
ated with that location are returned to the user. Also, in the
model, the users periodically send queries to the LBS during
a trip.

If SybilQuery just reports random k − 1 locations for each
user query sent to the LBS, it becomes easy to separate the
real locations. This is because real locations will follow a
real path between a source and a destination, whereas ran-
dom queries do not map to such paths. Moreover, the re-
ported random locations might end up in highly unlikely
places, such as mountains or oceans. Therefore, the sybil



queries being generated should also follow a valid path, i.e.
starting from a source and ending at a destination. To this
end, the SybilQuery tool requires the user to enter the trip
source and destination, so that it can generate similar looking
sybil source and destinations, and simulate the user move-
ment between them as realistically as possible. Also, the
tool requires the users to specify the k parameter, allowing
the user to select the level of privacy they desire. Larger the
value of k, stronger is the privacy protection. Recall that
a real query can be identified from a pool of all the queries
(sybil and real) by making a random guess with a probability
1/k.

The SybilQuery tool has three modules, namely an endpoint
generator, a path generator and a query generator. The end-
point generator produces k − 1 pairs of sybil sources and
destinations, which have similar statistical properties to that
of the user source and destination. For this, the tool re-
quires a database of past traffic information across a given
geographic region. The endpoint generator processes the
database for location clusters that are similar to the user
source and destination, and while picking up each sybil source
and destination from these clusters, it makes sure that the eu-
clidean distance between the sybil source and destination are
within a threshold of the euclidean distance between the ac-
tual user source and destination.

Once the k − 1 end points are generated, the path generator
uses any existing navigation system like Bing maps/Microsoft
Multimap [1], to generate paths between the end points. Each
path is represented as a sequence of way points. The query
generator uses this way point information to simulate the
user movement along the sybil paths. When the user initi-
ates a query with his current location l, the query generator
is triggered. It uses this location l to estimate the user offset
along his path, and simulates the motion along each of the
k − 1 sybil paths using similar offsets, and generates k − 1
sybil locations. All these k locations (real and sybil) are then
queried to the LBS at the same time.

RECREATING SYBILQUERY
A prototype implementation of SybilQuery has been reported
in [26], geared towards providing privacy for vehicular net-
works (cabs equipped with GPS systems). This prototype
uses PostgreSQL database with PostGIS spatial extensions
as the endpoint generator and an off-the-shelf mapping ser-
vice, Microsoft Multimap [1], as the path generator. Be-
cause the prototype is not publicly available, we had devel-
oped our own implementation of Sybilquery following the
instructions in [26] and [25]. In doing so, we tried to be as
close as possible to the original prototype so that our obser-
vations are not restricted to the prototype we developed.

For populating the regional traffic database, we obtained real
mobility traces of cabs in the San Francisco Bay area. The
Cabspotting [3] service, which tracks the location of the cabs
using on-board GPS devices, has provided us with these cab
traces. Each cab involved with the project, sends its loca-
tion to the server periodically. These updates are a tuple of
the form <cab-id, current latitude, current longitude, status,

timestamp>; (status indicates whether the cab was empty
or metered). All the metered readings in a sequence corre-
spond to a trip made by the cab. The cab traces, we obtained,
were spread over two periods of 45 days and 25 days. The
first dataset was used to pre-process the traffic database and
the second dataset of 25 days is used to test the efficiency of
the query obfuscation approach. There is a time gap of one
month between the two datasets.

We implemented the end point generator using the PostgreSQL
database with PostGIS Spatial extensions enabled and a python
client to communicate with the database. The trips’ informa-
tion gathered from the cab updates for the initial 45 days was
stored in the PostgreSQL database, which facilitates making
spatial queries. These trips are used in the pre-processing
step and during the generation of endpoints. Our trip database
had a total of 596, 496 trips for 540 cabs.

Pre-Processing Stage
For generating sybil endpoints, we need annotated databases
which contain tags to identify locations with similar prop-
erties or features. As manually labelling the data is hard,
SybilQuery uses a pre-processing step to process the database
and automatically extract the features for the locations. The
two features described in [26] are traffic density τ and the
probability distribution function (PDF) π. Based on the den-
sity values, the locations are separated into clusters or buck-
ets. All the locations within the same cluster were found to
share similar properties. Since these features vary with the
time of the day and the week, SybilQuery identifies six tem-
poral patterns [26]. Thus, for a given location, there are 6
values of density and 6 values of PDF.

In SybilQuery a geographic location l is represented as a
rectangular region or block instead of a geographic point,
to represent the map in a finite number of locations. Sybil-
Query [26] adopts an adaptive data structure such as Quadtree
[10] to represent blocks of uniform density. A block is con-
sidered uniform if every 25m×25m sub-block lying in it has
density values within some threshold of each other. If the re-
gion is not uniform, it is broken uniformly into 4 smaller
blocks. This is continued iteratively until the smallest block
size is reached or the block has uniform density.

In our implementation, we used the same features and the
temporal patterns. The smallest block size was chosen as
100m × 100m. We have used the threshold value of 250 to
determine the uniformity of adjacent blocks. At the end of
the pre-processing stage, with the parameters we have cho-
sen, the San Francisco Bay area could be represented using
16,384 blocks, close to what was reported in [26].

Sybil End Point Generation
When the user provides his source and destination points, we
identify the regions/blocks that contain these endpoints. All
the regions that have the similar traffic densities and similar
PDF π to user source are identified as possible sybil sources.
All the regions having similar traffic densities to that of the
user destination are identified as possible sybil destinations.
From these source and destination clusters, we select regions



such that the distance between the sybil source and desti-
nation regions is comparable to the actual user trip length.
Once the regions are identified, we select random locations
(to be specific, the nearest street addresses) within the re-
gions to generate sybil endpoints. In our implementation,
we followed the above approach and utilized the ‘Snap To’
feature already provided by the Microsoft Multimap Routing
API [1], which snaps the location coordinates to the nearest
road automatically.

Path Generation
For path generation between user endpoints and sybil end-
points, we use the Microsoft Multimap API [1] as specified
in [26]. The API takes as an input a source and destination
pair, and generates the shortest path between the endpoints
as a sequence of waypoints through which the user needs to
pass in order to reach the destination.

Query Generation
SybilQuery tool simulates the user movement along sybil
paths to generate sybil locations for the queries. Off-the-
shelf routing services, such as [1], provide the estimated time
to reach the destination based on the distance to be covered
and the projected speeds along the paths. Using these, we
estimate the speed of the user along the sybil paths. Addi-
tionally, the mapping service may also take into considera-
tion the current traffic information to estimate the trip time.
When the user initiates a query, the time elapsed since the
start of the trip and the estimated speed along the sybil paths
is used to generate his position along the sybil paths. For
every user location query, we estimate user’s positions along
the sybil paths and generate k location queries, which are
sent at the same time to the LBS.1

ATTACK PRELIMINARIES

Attacker Model
In our attack model, the adversary is the LBS itself. This
malicious LBS wants to track the users from their location
queries for its own personal reasons, ranging from causing
physical harm to performing a robbery, or even selling the
information to third party advertisers. With the use of query
obfuscation techniques, the LBS receives many fake queries.
The LBS intends to filter the real user queries to continue
with user profiling and to reduce the server overhead due
to the sybil queries (once identified, the server could sim-
ply respond with dummy responses to sybil queries, for ex-
ample). We assume that the adversary is passive and only
tracks the locations sent by the user without manipulating
the responses returned to the user. Moreover, we make an
assumption that the user is not making use of an anonymiz-
ing network, such as Tor, or proxy servers which hide the
query source from the LBS. Note that if the mobile network
service provider itself acts as a proxy or if an anonymizing
network is used, and if there are no user identifiers associ-
ated with the queries, then the user already enjoys a certain
1We do not incorporate current traffic conditions because we are
working with older trips. Instead, we only use the time and distance
information provided by the path generators to simulate the user
movement.

level of anonymity obviating the need for query obfuscation
tools. We aim to evaluate the query obfuscation approach
when it is used independently of any network anonymizers,
and when the attacker can relate all the queries coming from
a user’s device (using identifiers).

We consider two types of adversaries, based on the usage
scenarios of the query obfuscation tools:

1. Strong Adversary: If the query obfuscation technique is
released as a software update or an application onto the
mobile or navigational devices, then we can assume that
the LBS possesses a short-term history of location-based
queries posed by a user prior to using the query obfus-
cation tool (i.e., when no privacy protection was avail-
able and the LBS could associate a user’s identity with
the user’s queries). Equipped with this information, the
attacker then tries to filter the sybil trips and identify the
real user trips from a pool consisting of sybil and user
queries (i.e., obtained after the user started employing the
privacy tool). This scenario is realistic, since we can not
expect the users to reinvest in new devices just for protect-
ing their privacy.2

2. Weak Adversary: If the query obfuscation technique is
available to new users or new devices alone, then the LBS
does not possess any user history and is forced to filter the
sybil queries just by analysing the received user and sybil
queries. This situation arises when the user starts using
the query obfuscation tool prior to communicating with
the LBS for the first time.

In our attack model, we assume that the attacker does not
use any external or out-of-band information (like searching
Google about a user or knowing a user’s address through
yellow pages) apart from the locations in the queries sent
by the user and the time stamps. We intend to work with
the information directly available to the attacker obtained by
observing the user queries. Incorporating any additional and
meaningful side information can only increase the accuracy
of our attacks, and thus our results will be representing a
lower bound of accuracies achievable in identifying the user
queries.

Overview of Attacks
Since the strong adversary has access to user history (train-
ing data), we utilize machine learning classification tech-
niques to identify user query patterns and filter out the cur-
rent queries (test data) which do not comply to these query
patterns as sybil queries. To this end, we have selected Weka
[11], an open source machine learning software for our needs.
These machine learning classification techniques apply la-
bels (user or sybil) to the test data after learning the features
of each label from the training data.

For the weak adversary, we try to correlate trips to identify
the user queries. SybilQuery tool uses caching, but it treats
each user trip independently while selecting the sybil end-
2We note that such an attacker model has previously been incorpo-
rated in the context of web search privacy [24].



Figure 1. Correlating Trips

points. Because of this, the new sybil sources selected for
the following trip, might be very far from the destinations
of the previous trip in few cases, allowing us to identify
them as sybil queries. Consider a simple example shown
in Figure 1. Let us say the user is using SybilQuery with
k = 5, and completed Tripi−1 at T imei−1 and reached
destinations D1, D2, D3, D4 and D5. After a while, at time
T imei, he started another trip from sources S1, S2, S3, S4

and S5. The adversary only knows that one of these destina-
tions is the actual user destination and one of these sources
is the actual user source. Considering the previous locations
and the times reported by the user, the adversary can obtain
an assessment of the highest movement speed of the user.
Now, the adversary can identify all the valid (Dm, Sn) pairs
(where 1 ≤ m,n ≤ 5), such that the distance between Dm

and Sn can be covered in time (T imei − T imei−1) with
the recorded highest speed of the user (plus some threshold
speed, to accommodate increase in maximum user speeds).
Of all valid (Dm, Sn) pairs, we consider k pairs - one for
each destination (since user could be along any of the k des-
tinations and can go to only one source). We use two simple
methods (described in the following section) to identify the
optimal k pairs from the valid (Dm, Sn) pairs.

We begin with k empty trip sequences, each indicating the
probable sequence of trips taken by the user. We initialize
the trip sequences with the first set of k trips. For every new
received set of k trips, we obtain the last destination of each
trip sequence Dm and the sources Sn of the new k trips and
find the optimal (Dm, Sn) pairs, and add the trips to the trip
sequences appropriately. Situations may arise, where the last
destination of a trip sequence does not have any valid map-
ping with sources in the new set. This is because the desti-
nation is very far away from the sources of the trips in the
new set, and can not be covered in (T imei−T imei−1) time
going at the maximum user speed – thereby ending the trip
prematurely. Hence, after processing the last set of k trips, in
most cases, we are left with only p complete trip sequences
(where p ≤ k) – effectively reducing the complexity of the
problem. Based on the algorithm for determining the op-
timal (Dm, Sn) pairs, we can have few user trips and few
sybil trips in each of the p trip sequences.

For our experiments, we work with trips instead of individ-
ual location queries received from the user, because trips
convey more information and are easier to study. Given a
sequence of location queries, we identify trips based on the
timing information associated with the queries. As per the
SybilQuery model [26], clients periodically sends queries to
the LBS as they move from source to destination. So, if there
is more than 10 minutes of inactivity between subsequent lo-
cation queries, we consider the user began a new trip. Also,
since the queries are user initiated, the registered location
queries at the LBS convey the approximate source and des-
tination of the trip. This can be understood from Figure 2,
where the red colored crosses indicate the locations regis-
tered by the LBS, when the actual trip made by the user is
indicated by the blue line.

For each user, we use two metrics to measure the efficiency
of our attacks: (1) user accuracy, i.e., the percentage of
correctly identified user trips, and (2) sybil misclassifica-
tion rate, i.e., the percentage of sybil trips identified as user
trips.3 Let us assume there are u user trips and s sybil trips,
as reported by the sybil query tool, for a given user. On using
the classifiers, let us say u′ + s′ trips were identified as user
queries, where u′ corresponds to user trips identified as user
trips and s′ corresponds to sybil trips identified as user trips.
Then our metrics are going to be u′/u and s′/s, which we
shall henceforth call as accuracy and misclassification rate.
The classifier is said to perform better, if the value of u′/u
is close to 1 i.e. close to 100%, and s′/s is close to 0 i.e.
close to 0%. So the adversary’s goal is to identify as many
of the user trips as possible while making few mistakes in
(mis)identifying sybil trips as user trips.

Dataset Employed
We have collected cabspotting data for two periods of 45
days and 25 days. Of this, we have utilized the 540 cabs’ trip
data over a period of 45 days for preprocessing the database
and identifying the uniform regions in the San Francisco Bay
area. We have selected 85 cabs at random from the total 540
as the SybilQuery users. For each of these 85 users’ trips
during the later 25 days, we generated the sybil trips from
our SybilQuery implementation with the default security pa-
rameter of k = 5. In the case of strong adversary, the Cab-
spotting data collected for the initial 45 days would be used
as the user training data and the query pool of the remaining
25 days would serve as the test data. The weak adversary
only has access to the pool of queries received during the 25
day period.

EXPERIMENTAL PRELIMINARIES

The Preliminaries for Classification Attacks

Selecting the Classifiers
We have chosen Support Vector Machines (SVM) classifier
for our machine learning needs, because of its wide spread
use in many user identification scenarios like [17], [2] and
[8]. There are many SVM implementations in Weka [11],
3In traditional machine learning terminology, the two metrics are
known as the true positive rate and the false positive rate, respec-
tively.



Figure 2. Trip formed from the Approximate Source and Destination
points

and we have chosen One-class SVM and C-SVC classifier
implementations. One-class SVM is used when we have the
training data for only one class, and its instances need to be
identified when mixed with outliers or non-class instances.
Since we had the training data for the users and the test data
contained user queries mixed with sybil queries (outliers),
we used one-class SVM to identify the user queries.

C-SVC classifier is a binary classifier, which needs the train-
ing data for both the classes. Since the training data set is not
available for the sybil trips, we wanted to test if the sybil trips
generated for a known set of user trips helped in the classifi-
cation process. To this end, for a randomly selected set of 10
users (cabs), whose user trips are known to us, we generated
the sybil trips using SybilQuery. For these 10 users, we fixed
the value of parameter k as 10, so as to maximize the feature
extraction from sybil trips. The generated sybil queries are
used as the sybil training data set for binary classification.

Selecting the Attributes
Every trip is represented as a sequence of locations repre-
senting the source, in between waypoints and the destina-
tion. Since the endpoints alone convey a lot of information
about the trips, we decided to compare the classification ac-
curacies with and without including the waypoints. The data
provided to the classifier is of the format: <cab-id, start lo-
cation, (waypoint1, waypoint2,...), end location, temporal,
class>. Here, the class label (either user or sybil) will be
provided for instances in the training data, and is to be esti-
mated for the instances in the test data. In one experiment,
we varied the number of waypoints to check its effect on the
accuracies.

SVM treats each data instance (i.e., trip) to be independent
and tries to classify it as a user or sybil trip based on the at-
tribute values. However, there is an additional restriction in
our scenario that states that only one user trip can exist in a
set of k trips reported to the LBS at one given time (because
k−1 trips are sybil trips). To incorporate this feature into the
classification, we tweaked the standard Weka SVM library.
SVM provides the posterior probabilities to each label (user
or sybil) for each data instance/trip. In default SVM clas-
sification, a data instance is labelled user or sybil based on
which probability is greater. We tweaked the classification
algorithm to consider the user class probabilities of all the

trips in a set, and label the trip with maximum user class
probability as the user trip and the rest as sybil trips.

We also wanted to test if varying the security parameter k
has any effect on the level of privacy (theoretically, larger k
should provide better protection). To this end, we determine
the user accuracies and the misclassification rates for a set of
48 users, with k set as 5, 7, 9, and 11.

The Preliminaries for Trip Correlation Attacks
After finding valid set of (Dm, Sn) pairs, as described be-
fore, we need to find at most k optimal pairs such that each
destination is mapped to one source. We consider two sim-
ple approaches to obtain these k optimal pairs. In the first
approach, we map each destination Dm to the nearest source
Sn, such that (Dm, Sn) is present in the valid set of pairs. In
the second approach, we map each destination Dm to the
source Sn which could be reached with speeds closest to the
average speed of the user, in time (T imei − T imei−1). We
can find the average speed of the user in the same way as
finding the highest speed of the user (based on previously
reported locations and time stamps).

EXPERIMENTAL RESULTS
Classification Attacks
To recall, our first experiment involves the one-class SVM
classifier wherein we train the classifier with the user train-
ing data alone, and try to distinguish the user trips from the
sybil trips by considering them as data outliers. For the re-
maining four experiments, we perform C-SVC binary clas-
sification using the sybil query training data generated from
known user trips. In the second experiment, we represent a
trip with just the source and the destination pair. In the third
experiment, the trips are represented as a sequence of loca-
tions including the source, destination and few waypoints in
between. The fourth experiment is a slight variation of the
second experiment, where we modify the C-SVC classifica-
tion mechanism to consider the restriction that only one user
trip can exist in a set of trips reported by the SybilQuery at
a particular time. The fifth experiment is a variation of the
third experiment with this additional restriction.

The average user accuracies and the sybil misclassification
rates obtained after running each of these five experiments
are reported in Table 1. In all these experiments, the value
of k was 5, and the trips in experiments three and five were
represented as a sequence of source, destination and 3 way-
points along the path from source to destination. Looking
at Table 1, we observe that, of all the experimental meth-
ods, the restricted classification approach with just the trip
endpoints seems to outperform the rest – with a quite high
user accuracy of about 93.67% and very low sybil misclas-
sification rate of only about 2.02%. We also find that incor-
porating waypoints seems to have an adverse effect on the
performance.

As discussed earlier, we were also interested in testing the
effect of security parameter k on the level of privacy pro-
vided to the users. To achieve this, we used SybilQuery
to obfuscate the queries of 25 users (independent of the 85



Experiment Type Average User Average Sybil Mis-
Accuracy classfication Rate

#1: One-Class Classifi- 44.63% 36.1%cation using SVM
#2: Binary Classifica- 44.93% 5.02%tion with Trip Endpoints
#3: Binary Classifica- 16.57% 7.03%tion with Waypoints
#4: Restricted Classifica- 93.67% 2.02%tion with Trip Endpoints
#5: Restricted Classifi- 79.29% 5.18%cation with Waypoints

Table 1. Comparison of Average Accuracies for Different Experiments
(by default, k is 5 and number of waypoints is 3 whenever applicable)

Value of k Average User Average Sybil Mis-
Accuracy classfication Rate

5 80.17% 6.13%
7 74.04% 5.46%
9 67.93% 5.25%

11 63.13% 5.02%

Table 2. Comparison of Average Accuracies for Different Values of
Security Parameter k (using restricted classification with 3 waypoints)

users selected for previous set of experiments) using the val-
ues of k as 5, 7, 9 and 11. We then applied one of our previ-
ous classification approach, i.e., restricted classification us-
ing three waypoints along the path. For each of these 25
users, and for each value of k, we calculated the user accu-
racies and sybil misclassification rates. The average values
are depicted in Table 2. As expected, the performance of the
classifiers indeed goes down with the increase in the secu-
rity parameter. However, even with a value as large as 11,
the user accuracy is reasonably high standing at over 60%
and sybil misclassification rate is quite low at about 5%.

Since the performance of our methods degraded when we
incorporated more information about the trips (i.e., the way-
points), as can be seen from Table 1, we conducted an ad-
ditional experiment on a set of randomly chosen 25 users (a
subset of the previous 85 test users) by varying the number
of waypoints between the trip source and destination. The
restricted classification approach was used and the value of
parameter k was set to the default 5 for this experiment. The
results of this experiment are shown in Table 3. Increas-
ing the number of waypoints appears to work favourably to
the performance of classifiers. The results seems to be ap-
proaching the accuracies and misclassification rates corre-
sponding to our best approach so far, i.e., restricted classifi-
cation with trip endpoints only (Table 1).

Trip Correlation Attacks
As described earlier, we intend to correlate trips based on
two metrics – distance and average speed. We start with the
first set of k trips and form k trip sequences containing one
trip each. For every new set of k trips received, we deter-
mine the mappings between these new trips and the last trip

Number of Average User Average Sybil Mis-
Waypoints Accuracy classification Rate

3 81.40% 5.67%
4 86.20% 4.21%
5 91.58% 2.53%

Table 3. Comparison of Average Accuracies for Different Number of
Waypoints (using restricted classification with k = 5)

in each of the k trip sequences. Based on the mappings, we
add these new trips to the trip sequences. If there are no
mappings between the new trips and the last trip of a trip
sequence, then that trip sequence ends prematurely. After
processing all the trip sets received, we are left with p com-
plete trip sequences, where 0 ≤ p ≤ k. In some cases, the
value of p is zero because all the trip sequences can end pre-
maturely. This happens when the last trip in each of the k
trip sequences is a sybil trip and the sources in the next set
of trips are very far away. Also, these p trip sequences are
not completely disjoint and contain user or sybil trip over-
lappings. These p trip sequences form a smaller set P of
user and sybil trips. We consider trip correlations to be suc-
cessful if the random probability of picking a user trip from
the set P is better than the random probability to pick a user
trip from the complete set of user and sybil trips.

The results for the trip correlations based on the two metrics
are depicted in Table 4. Here, columns 4 and 5 represent the
percentage of total user trips and percentage of the total sybil
trips that fall in the set P . While using distance metric to
identify the optimal (Dm, Sn) pairs, we have a large number
(56) of users whose trip sequences ended prematurely. How-
ever, for the rest 29 users, the trip sequences contained about
42.89% of total user trips and 15.2% of total sybil trips. The
probability of a random trip, picked from this set P , to be-
come a user trip is 0.414 which is about twice the random
probability when k = 5. By using the average speed met-
ric, we were able to reduce the number of users whose trip
sequences end prematurely to 43, but the percentage of to-
tal user trips reduced to 33.57% and the percentage of sybil
trips increased to 17.38%. The random probability of pick-
ing a user trip from this smaller subset is 0.326 (still higher
than random probability across the complete set).

INTERPRETATION OF RESULTS AND DISCUSSION

Comparison with Prior Evaluation of SybilQuery
An analysis of SybilQuery tool had been performed in [25],
but it was restricted to only a user study and certain statistical
measures. The SybilQuery authors performed a study with
15 users, by visually showing them a combined set of real
and user trips and asking them to identify the real trips. The
results of this study showed that a user can not differentiate
between a real and a sybil trip with a probability any bet-
ter than 1/k (random guessing). The authors of SybilQuery
also devised a statistical metric PATHCMP [25], to measure
the similarity between real and sybil paths. This analysis
showed that the real and the sybil paths are very close to
each other, based on the PATHCMP metric, thereby making
it hard to statistically separate the two. It is mentioned in



Total Number Number of users Average % of user Average % of Sybil
of Users with p=0 queries in Set P queries in Set P

Distance Metric 85 56 42.89% 15.20%
Speed Metric 85 43 33.57% 17.38%

Table 4. Correlation Experiment Results

[26] that SybilQuery can not defend against adversarial LBS
which has some out-of-band background information about
the users, like their daily commuting patterns or about the
specific places the user visits such as home and office. We
note that our attacks against query obfuscation utilize not
out-of-band information, but rather the user’s queries them-
selves that were posed to the LBS prior to employing Sybil-
Query.

Our work analyzes whether the sybil and the real queries
can be separated if we take into consideration the user be-
haviour. Every cab driver, the user in our case, may follow a
particular pattern while making trips around the city. While
generating the sybil endpoints, the SybilQuery tool does not
take this important user aspect into account, and hence the
sybil endpoints and the user trip endpoints are very likely to
differ.

Performance of Classification Methods
When we have user history, it is easier to use off-the-shelf
machine learning techniques as compared to manually com-
ing up with a function which helps us in separating user and
sybil trips. Finding relation between data instances based on
the data fields is a hard task. Support Vector Machines map
the data instances into points in high dimensional/kernel spaces,
which makes it easier to identify relations among the data
instances. So, when a test data instance is supplied, it is con-
verted to a point in kernel space and based on its proximity to
points of different classes, the test data instance is classified
as a user or sybil query.

Classification algorithms should perform better than naive
identification techniques, like query/trip repetition between
the test set and the training set. A trip repetition occurs when
a trip in the user training set appears again in the user test set.
Identification of such user trips is trivial. Moreover, just the
repetition of source or the destination locations can indicate
that it corresponds to a real user query. For assessing the
influence of query repetitions in our experiments, we tried to
identify such trip repetitions.

We considered two trips to be repeating or identical, if the
sources (starting points) of both the trips lie within a 25m×
25m region, and the destinations also obey the same condi-
tion. We tried to identify the trip repetitions for all the 85
users we experimented with, and the average number of re-
peated user trips is found to be only 1.48%. The average
source repetition was 32.64% and the destination repetition
was 28.58%. It is possible that the sybil trips (or sources or
destinations) are also identical to the user trips (or sources
or destinations). We found that such an overlap between the
sybil trips and the user trips was close to 0%, but the sybil
source overlap was 7.84%, and the sybil destination over-

lap was 7.56%. Using this naive classification approach,
we were able to obtain user accuracies close to 62%, while
the sybil misclassification rate was close to 16%. We can
clearly see that our restricted classification approaches per-
form much better than the naive approach (Table 1).

One-class SVM tries to identify the distribution of the user
class, i.e., the regions with large fraction of training data in
the kernel space [23]. All those test instances lying within
the region are classified as user instances and the rest are la-
belled as outliers. Since the classifier did not have informa-
tion about the sybil class, it could not accurately differentiate
between a user query and a sybil query, thereby resulting in
poor performance. In the case of binary classification (exper-
iments 2,3,4 and 5), we find a marginal hyperplane that sep-
arates the binary class instances belonging to user and sybil
classes. We generated the sybil training data from known
queries of 10 users. Since all SybilQuery instances use the
same database for generating the trip endpoints, we are able
to gather some details about the underlying database when
we try to generate the Sybil query training set. Thus, by
using the sybil training dataset, we were able to reduce the
number of misclassifications, but the user accuracies did not
improve. When we tried to increase the amount of trip in-
formation, by adding the details about three waypoints along
the user trip, the accuracies decreased further. This could be
because three waypoints are not sufficient to represent the
entire trip and incorporating the waypoints introduced more
noise into the training data.

As discussed before, SVMs treat the data instances (i.e. trips)
to be independent. To impose the restriction that only one
user trip can exist in k trips, we obtained the class proba-
bilities returned by the SVM classifier when it is trying to
classify a data instance. For every data instance SVM tries
to check these probabilities, and assigns the label which has
more probability (> 0.5). For every set of k trips sent to
the LBS, we pick the one with the highest user class prob-
ability and label it as the user trip and the rest as the sybil
trips. There is a substantial improvement when we added
this restriction to the SVM classification. This is because –
in simple SVM classification all trips in a set could be la-
belled as sybil trips, but in the restricted version one trip (the
one with highest user class probability, even if it is less than
0.5) should definitely be labelled as user trip and the rest as
sybil trips. When only end points were used to represent
the trips, we were able to attain the best performance with
93.67% average user accuracy and 2.02% misclassification
rate. On adding the waypoint information, the accuracies de-
creased due the same reason discussed in the case of regular
binary classification.



Effect of Security Parameter
Table 2 shows that the accuracies are decreasing with in-
crease in k value. This is expected, because more the number
of sybil trips, better is the level of privacy protection. Notice
that when we increase the number of sybil trips, the prob-
ability that these sybil trips overlap with the user locations
(in the user history) is also increased. As per our modified
restricted SVM classifier, if these sybil trips have a higher
user class probability, they are labelled as user trips result-
ing in the actual query being classified as the sybil query.
Hence, the user accuracies decrease when the value of k is
increased. Although the misclassification percentages from
the table might appear to be slightly decreasing, the actual
number of misclassifications are increasing (since k is in-
creasing).

Effect of Waypoints
Having few waypoints may not be sufficient to represent
the entire trip. These waypoints are generated when the
user initiates a query to the LBS, so they are different from
the important locations which govern the trip between the
source and the destination, like places where the user needs
to change his direction. Hence the waypoints registered by
the adversary add more noise to the trip information con-
veyed by the endpoints, resulting in a decrease in accuracy
(as seen in Table 1). As these number of waypoints increase,
we get more information about the trip resulting in an im-
provement in user accuracies and decrease in the misclassi-
fication rates (as we can observe from Table 3).

Performance of Correlation methods
Even though we do not receive any queries from users in
between trips, the user must have travelled between the des-
tination of one trip and the source of the next trip. Taking cue
from this, we try to relate trips together and form a trip se-
quence indicating a probable path the user might have taken.
The main purpose of this evaluation was to check if we can
eliminate some sybil trips and increase the random probabil-
ity of selecting user trips. Our results in Table 4 show that
we were successful in doubling the probability of selecting
a user trip using simple approaches – distance and average
speed. Using any better approach to identify optimal map-
pings is surely bound to reduce the number of users with
p = 0 and the sybil trip percentages, and also increase the
percentage of user trips.

Extensibility of Data
The data that we utilized in our experiments came from real
cabs while no privacy-preserving tool was being used by the
devices equipped on the cabs. In using this data for our
purposes, we have assumed that the user’s querying pattern
is independent of whether the obfuscation technique, like
SybilQuery, is employed or not. This is because the users
may not be aware that such privacy mechanisms are enabled.
This is especially true in the case of cab drivers or everyday
mobile users. Moreover, it is highly unlikely for the user
to purposefully make sensitive queries when these services
are enabled, and make insensitive queries when they are dis-
abled. This is a valid assumption because the tools such as
SybilQuery offer better protection when they are enabled all

the time. Therefore, our results capture realistic usage of the
underlying tool, i.e., SybilQuery.

Extensions to Other Applications and Tools
Our methods indicate that attaching statistically similar trips
to the user trips can not always provide anonymity, when
the user possesses behavioural patterns which make his trips
stand out within the pool of real and fake trips. The ap-
proach is not specific to the cab mobility traces and could
be generalized to any implementation of SybilQuery, rang-
ing from mobile or smart phone deployments to regular GPS
navigational device implementations adopted for personal
cars. In fact, it is our hypothesis that using obfuscation tools
like SybilQuery on personal devices can further increase the
identification accuracies. This is because on personal de-
vices, the user’s behavioural traits will be much more promi-
nent when compared to those on passenger vehicles or cabs.
The classification approaches and experimental methodol-
ogy are also applicable and can be used to evaluate the effec-
tiveness of other query obfuscation tools, such as [22]. We
anticipate that our performance results might be very similar
in case of [22] due to the fact that this tool also does not take
into account the user behavior while generating fake queries.

IMPROVING THE QUERY OBFUSCATION TECHNIQUES
Based on our results, we propose a few simple, yet impor-
tant changes to the query obfuscation techniques to make
them more robust. The query obfuscation tool should not
just be developed from aggregate statistical information, but
it needs to consider the user query patterns to generate fake
queries resembling real user queries. These user query pat-
terns could be obtained by recording the user queries for a
short period. While generating the sybil queries, the obfus-
cation tool can utilize both the statistical information and the
user query patterns to generate sybil queries.

To prevent the machine learning attacks in the case of strong
adversary, the obfuscation tool can repeat few locations the
user previously visited in order to form the sybil queries.
We can make sure that either the source or the destination of
the sybil trips have occurred in the history and try to bring
in or add in more locations that the user might visit. And,
later we could use these new locations introduced to gener-
ate future fake trips. Since these locations occur in the user
history, the machine learning classifier would classify them
as user queries effectively increasing the sybil misclassifi-
cations and raising the level of the privacy protection pro-
vided. However, repeating locations from the user history
might raise privacy issues because now we will be leaking
both current and past information instead of the current in-
formation alone. Hence, this approach would be helpful if
we can guess what part of the user query history the attacker
possesses, and we can restrict the location repetitions to that
part alone.

The trip correlation was able to filter out few sybil trips be-
cause the obfuscation tool is treating each user trip indepen-
dently and selecting sybil trip sources very far from the pre-
vious sybil destinations. To prevent these attacks, we need
to make these trip sequences (not just individual trips) to



closely mimic the user behaviour. For this, we need to con-
sider previous sybil destinations while generating sybil trips
for the next user trip. If the user travelled distance x from the
previous trip destination, and took time τ before making an-
other trip, then the sybil sources need to lie within a distance
of x+ c, where c is a constant, from the previous sybil desti-
nations – such that the distance x+ c can be covered in time
τ with the highest user speed recorded. This would make it
harder for the adversary to filter out any sybil trips, because
now all the (Dm, Sn) pairs become valid, effectively making
the probability to pick a user trip close to 1/k.

CONCLUSIONS
In this paper, we analyzed and tried to quantify the level of
location privacy provided by query obfuscation tools, specif-
ically focusing on one practical implementation named Sybil-
Query. We recreated the SybilQuery system using real mo-
bility traces of 540 cabs over a period of 70 days, and we
generated sybil trips corresponding to the real traces. We
demonstrated that a strong adversary, one having knowledge
of the user location queries from the past, can effectively use
machine learning techniques to identify the user trips. We
also made an attempt to identify the reasons behind the ma-
chine learning accuracies, and tried to answer why they vary
with different parameters, such as k, and the number of way-
points. In addition, we showed that even a weak adversary,
one who does not have access to previous user locations,
can correlate trips and filter out a certain fraction of the sybil
trips. Using correlation attacks, we were able to double the
random probability to identify a user trip.

Based on these results, we can conclude that existing query
obfuscation techniques, based on aggregate statistical infor-
mation alone, will be ineffective in protecting users’ location
privacy. The strength of our attacks lies in the fact that we
use minimal information available to the adversary as well as
off-the-shelf and simple approaches in identifying the user
and sybil queries. The results could be improved further
by using additional out-of-band information such as current
traffic distributions. We therefore conclude that obfuscation
tools need to take into account the user location patterns, so
as to generate real looking sybil queries. We proposed some
improvements which could be incorporated to make these
obfuscation techniques more robust. On a broader note, we
believe that the insights drawn from our work will help guide
the design of future query obfuscation tools, better resistant
to automated privacy attacks.

Acknowledgments
We would like to thank the Cabspotting service for providing
us with the cab traces to conduct our evaluation, and Ambar-
ish Karole for his help with the experiments.

REFERENCES
1. Microsoft multimap api. http://classic.multimap.com/

openapidocs/1.2/demos/index.htm.

2. S. Ben-Yacoub, Y. Abdeljaoued, and E. Mayoraz. Fusion of face and
speech data for person identity verification. Neural Networks, IEEE
Transactions on, 10(5):1065 –1074, Sept. 1999.

3. Cabspoting. http://cabspotting.org/.

4. C. Caldwell. A pass on privacy?, Jul 2005.
http://www.nytimes.com/2005/07/17/magazine/
17WWLN.html?_r=1.

5. J. Choe. Nyc cab drivers say ”nothanks” to gps installation, Mar 2007.
Available at http://www.nytimes.com/2005/07/17/
magazine/17WWLN.html?_r=1.

6. C.-Y. Chow, M. Mokbel, and X. Liu. Spatial cloaking for anonymous
location-based services in mobile peer-to-peer environments.
GeoInformatica, pages 1–30, 2009.

7. C.-Y. Chow, M. F. Mokbel, and X. Liu. A peer-to-peer spatial
cloaking algorithm for anonymous location-based service. In ACM
international symposium on Advances in geographic information
systems, 2006.

8. O. de Vel, A. Anderson, M. Corney, and G. Mohay. Mining e-mail
content for author identification forensics. SIGMOD Rec., 30:55–64,
2001.

9. M. Duckham and L. Kulik. A formal model of obfuscation and
negotiation for location privacy. In Pervasive Computing, pages
152–170. 2005.

10. R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval
on composite keys. Acta Informatica, 4:1–9, 1974.

11. I. W. . E. Frank. Data Mining–Practical Machine Learning Tools and
Techniques, Second Edition. Elsevier, 2005.

12. B. Gedik and L. Liu. Protecting location privacy with personalized
k-anonymity: Architecture and algorithms. IEEE Transactions on
Mobile Computing, 7:1–18, 2008.

13. G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan.
Private queries in location based services: anonymizers are not
necessary. In SIGMOD international conference on Management of
data, 2008.

14. G. Ghinita, P. Kalnis, and S. Skiadopoulos. Mobihide: a mobilea
peer-to-peer system for anonymous location-based queries. In
Conference on Advances in spatial and temporal databases, 2007.

15. M. Gruteser and D. Grunwald. Anonymous usage of location-based
services through spatial and temporal cloaking. In Conference on
Mobile systems, applications and services, pages 31–42, 2003.

16. M. Gruteser and B. Hoh. On the anonymity of periodic location
samples. In Security in Pervasive Computing, volume 3450, pages
179–192, 2005.

17. M. Hearst, B. Schvlkopf, S. Dumais, E. Osuna, and J. Platt. Trends
and controversies - support vector machines. IEEE Intelligent
Systems, 13(4):18-28, 1998.

18. U. Hengartner. Hiding location information from location-based
services. In Mobile Data Management, 2007 International Conference
on, pages 268–272, May 2007.

19. B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady. Enhancing security
and privacy in traffic-monitoring systems. IEEE Pervasive Computing,
5:38–46, 2006.

20. A. Khoshgozaran, H. Shirani-Mehr, and C. Shahabi. Spiral: A
scalable private information retrieval approach to location privacy. In
Mobile Data Management Workshop, pages 55–62, Apri 2008.

21. J. Krumm. Inference attacks on location tracks. In Proceedings of the
5th international conference on Pervasive computing,
PERVASIVE’07, pages 127–143, 2007.

22. J. Krumm. Realistic driving trips for location privacy. In Pervasive
Computing. 2009.

23. L. M. Manevitz and M. Yousef. One-class svms for document
classification. J. Mach. Learn. Res., 2:139–154, 2002.

24. S. T. Peddinti and N. Saxena. On the privacy of web search based on
query obfuscation: A case study of trackmenot. In Privacy Enhancing
Technologies Symposium (PETS), 2010.

25. L. I. Pravin Shankar, Vinod Ganapathy. Privately querying
location-based services with sybilquery- technical report, 2009.
Available at: http://www.cs.rutgers.edu/˜vinodg/
papers/technical_reports/tr652/.

26. P. Shankar, V. Ganapathy, and L. Iftode. Privately querying
location-based services with sybilquery. In International conference
on Ubiquitous computing, 2009.


