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Abstract—In this paper, we present a run-time defense to
the malware that inspects the presence/absence of certain trans-
parent human gestures exhibited naturally by users prior to
accessing a desired resource. Specifically, we focus on the use
of transparent gestures to prevent the misuse of three critical
smartphone capabilities – the phone calling service, the camera
resource and the NFC reading functionality. We show how the
underlying natural hand movement gestures associated with the
three services, calling, snapping and tapping, can be detected in
a robust manner using multiple – motion, position and ambient
– sensors and machine learning classifiers. To demonstrate the
effectiveness of our approach, we collect data from multiple phone
models and multiple users in real-life or near real-life scenarios
emulating both benign settings as well as adversarial scenarios.
Our results show that the three gestures can be detected with
a high overall accuracy, and can be distinguished from one
another and from other activities (benign or malicious), serving
as a viable malware defense. In the future, we believe that
transparent gestures associated with other smartphone services,
such as sending SMS or email, can also be integrated with our
system.

I. INTRODUCTION

Mobile devices, especially smartphones, are rapidly becom-
ing ubiquitous. These devices open up immense opportunities
for everyday users offering valuable resources and services.
In addition to traditional capabilities, such as voice calling,
SMS and web browsing, most smartphones today have high-
resolution cameras and many of them come equipped with
the NFC (Near Field Communication) functionality. An NFC
phone can be used as an RFID contactless payment token,
such as a credit card. It can also be used as an RFID reader
that can “read” other RFID cards or NFC phones in close
proximity. All these features on mobile devices have not only
attracted millions of consumers but have also motivated the
developers to build wide range of apps.

At the same time, these devices are also becoming an easy
target for malicious activities. At present, mobile malware has
become a burgeoning threat to mobile devices and their users
[7, 8, 10, 13, 17, 20]. One of the primary reasons for such
malware explosion is user’s ignorance; users often download
applications from untrusted sources which may host apps with
hidden malicious codes. Once installed on a smartphone, such
malware can exploit the smartphone in various ways. For
example, it can access the smartphone’s resources to learn
various sensitive information about the user, secretly use the
camera to spy on the user or make premium rate phone calls
without user’s knowledge, or use NFC reader to skim for
physical credit cards within its vicinity. Indeed, many practical
instances of such malware have been reported either in the wild

or by academicians and practitioners. For instance, PlaceRaider
[24] is a visual malware that can take pictures of a user’s
surroundings, building a 3-D model of the user space and
gleaning sensitive information. An NFC pickpocketing Trojan
program has also been developed [1] that can sniff nearby
credit cards.

Unfortunately, current operating systems (e.g., Android
and iOS) provide inadequate security against these malware
attacks. For granting permission to an application requiring
access to the resources, these operating systems either require
out-of-context, uninformed decisions at the time of installation
via manifest [2, 19] or prompt users to determine their interest
via system prompt [14, 19]. This approach relies upon user
diligence and awareness. It is well-known that most users do
not pay attention to such “Yes/No” prompts and frequently
just select “Yes” so as to proceed with the installation. Once
granted the permission, applications have full authority over
the resources and can access them without the owner’s consent.
In addition to relying upon user permission, applications are
also reviewed. However, review process has failed in the past
[11, 26] and users gaining the root permission/ jail-breaking
the phone can easily install the third party applications which
may not have been reviewed.

In this paper, we set out to defend against mobile malware
that can exploit critical and sensitive mobile device services,
especially focusing on the phone’s calling service, camera and
NFC. In order to remain stealthy, mobile malware attacks occur
in scenarios where the device user has no intention to access
the underlying services. Thus, if the user’s intent to access the
services can be captured in some way, these attacks could be
prevented. We propose to elicit a user’s intent via gestures that
are transparently and naturally performed by the user prior to
accessing the services. In other words, whenever the user wants
to access the service, she will naturally exhibit a particular
gesture. On the other hand, if the malware attempts to access
the service, the gesture will be missing and the access request
can be blocked. We focus on authorizing an app with the use of
transparent human gestures, not on authenticating users (which
is an independent problem).

This general idea of human gesture-centric malware pre-
vention was first introduced in our own recent work [12, 23].
However, this line of work only considered natural gestures
to protect the NFC resource (such as tapping) or required the
users to perform certain “explicit” gestures (such as hand wav-
ing in front of the phone). The latter form of gestures impose
additional burden on the user every time access is needed
thereby undermining system’s usability, and may eventually



degenerate into nothing more than a “Yes/No” prompt if used
frequently thereby reducing security. In this paper, we extend
the scope of transparent gestures to protect the phone calling
service and the camera resource, and propose a novel and more
robust gesture detection mechanism based on multiple sensors
to protect the NFC reading service.
The contributions of this paper are three-fold:

1. Malware Prevention Based on Transparent Gestures: We
propose the use of transparent gestures to prevent the
misuse of three critical smartphone capabilities – the phone
calling service, the camera resource and the NFC reading
functionality. We show how the underlying hand movement
gestures associated with the three services can be detected
in a robust manner using multiple – motion, position and
ambient – sensors and machine learning classifiers. In the
future, we believe that transparent gestures associated with
other smartphone services, such as sending SMS or email,
can also be integrated within our system.

2. Gesture Detection Design and Implementation: We design
and implement a suite of three novel transparent gesture
detection mechanisms as part of the proposed malware defense
on the Android platform. The calling gesture for an incoming
or outgoing call involves holding the phone then moving it
close to the ear. The snapping gesture involves holding the
phone in hand, and raising and holding it to snap a picture
or video. The tapping gesture involves holding the phone in
hand, and tapping and holding onto a NFC/RFID tag.

3. Experiments and Evaluation: To demonstrate the effective-
ness of our approach, we have collected data from multiple
phone models and multiple users in real-life or near real-life
scenarios emulating both benign settings as well as adversarial
settings, and report on the overall accuracy of our gesture
detection approaches. Our results show that the calling, snap-
ping and tapping gestures can be detected with high overall
accuracy, and can be distinguished from one another and from
other activities.

II. BACKGROUND
A. Threat Model

In our security model, similar to [12, 23], we assume that
a user (Alice) has already installed a malicious application
(malware) on her device. She is unaware of the presence of this
malware on the device as it can hide inside a benign looking
application such as a game. This can happen, for example,
when the user downloads an app from an untrustworthy
source. Malware can also spread to user device via various
paths/communication channels without any user suspicion.
Preventing malware from being installed on the phone is
orthogonal to the scope of our model.

We also assume that the OS kernel is healthy and is
immune to the malware infection [12, 23]. Strengthening the
kernel is again an orthogonal problem [18, 21]. To be specific,
malware is not able to maliciously alter the kernel control
flow. We also assume that hardware is immune from the
malware and the malware cannot manipulate the device’s on-
board sensors: A malware capable of manipulating the sensors
can also produce appropriate gesture required to access the
sensitive resources.

The eventual goal of the malware is to access the device’s
sensitive resources/services to make premium phone calls,

take pictures of user’s surroundings [24] or read nearby NFC
enabled credit cards/tags [1]. It may continuously try to access
these services or at random times to remain stealthy. We do
not enforce any restrictions on how frequently the malware
attempts to access a given service.

Finally, we assume that the attacker does not physically
possess the phone. If the attacker has physical access to the
phone, then he can simply grant permission to malware by
providing the necessary gesture. In other words, our mech-
anism is not intended for the purpose of user authentication,
but designed to prevent malicious applications from accessing
phone’s resources .

B. Design Goals and Metrics
For our scheme to be effective and practical, we need to

consider following design goals (adopted from [12, 23]):

1. The scheme should be lightweight in terms of memory,
computation and power consumption.

2. The approach should be efficient, i.e., not incur a perceptible
delay. If a user has to wait for a perceptibly long time while
using the scheme, this will affect the overall usability.

3. The scheme should be robust to errors. That is, the app
must be granted permission with high probability when a user
is actually trying to access the services/resources (usability),
while the malicious apps must be denied the permission to
access them (security). A detailed set of metrics to evaluate
the robustness of our approach is provided in Section V.

4. The approach should be transparent to the users. The
users should not be required to perform additional tasks or
gestures (such as explicit gestures [12, 23]) because such
actions may degrade usability and security, and reduce chances
of adoption.

III. OUR APPROACH: CURBING MALWARE USING
TRANSPARENT GESTURES

1) Approach Overview: The Android OS, one of the most
popular smartphone operating systems, provides APIs to sup-
port different categories of sensors such as those that measure
motion, position and environment. Motion sensors such as
accelerometer and gyroscope provide information regarding
movement of the phone. Position sensors, such as magne-
tometer and orientation sensors, provide information about
the orientation and position of the phone with respect to the
world’s frame. Environmental sensors, such as temperature,
pressure and illuminance, monitor ambient physical properties
around the phone. In our malware defense mechanism, we
leverage these sensors, especially motion sensors, to identify
if the phone has been moved in a way that the user is
trying to perform certain activities. We show that such hand
movements can be used to protect three critical mobile device
resources – voice dialing, camera and NFC – against malicious
use. These gestures are transparent to the users as they are
performed implicitly as part of the activity itself – no additional
involvement or explicit gestures from the user is needed.

Now let’s consider the case of dialing or receiving a
phone call. As part of making/answering a call, a user either
presses/swipes a “Call” button which can be a “Dial” button
or an “Answer” button, or an icon, and then brings the phone
close to the ear. This involves a particular motion of the phone



Fig. 1. System Architecture (our current system supports calling, snapping
and tapping gestures, but can also incorporate other transparent gestures in
the future).

which can be measured using the motion sensors. In addition,
the phone may be subject to a certain hand pressure which can
be detected using the pressure sensor. Similarly, when a user
tries to take a picture/video with a camera on her device, she
first opens a camera app then orients her device to compose the
picture in the viewfinder and finally captures the snapshot.
This process involves a particular hand motion which can be
detected using the different sensors. In the same vein, before
“reading” an NFC tag or another NFC device, the user has to
move the phone towards the NFC tag/device, tap on it, hold
until the information is read, and then bring the phone back.
Similar to phone call and camera access, the NFC reading
gesture can be detected using various sensors.

In this paper, we show that these three particular gestures
can be detected in a robust manner using machine learning
classifiers based on data drawn from multiple phones’ sensors.
We will demonstrate in the following sections that our ap-
proach meets all of our design goals such as being lightweight,
efficient, robust and user-friendly.

2) System Model: The idea of our approach is to add
another layer of permission control on top of the original
Android permission granting system. When an application
requests a resource access, such as to make phone call or use
camera hardware or use NFC, android checks the resource
access permission associated with the app before allowing any
access to the resource. If the user has provided the app with
the permission it needs during the installation time, the app is
allowed to access these resources. Our approach adds another
layer of security on top of this mechanism to prevent malicious
application from using the sensitive resources. The gesture
detection mechanism should follow a trusted path to the OS,
as stated in Section II-A, assuming the kernel control flow is
not compromised.

To identify if the corresponding gesture has been per-
formed by the user while accessing a resource, such as
making/answering a call, taking a picture with the camera or
tapping an NFC tag, our system first waits for the user to
trigger the event. When such an event occurs, the Android OS
throws the corresponding intent. Next, the intent is intercepted
and checked for the permission. The permission token is
granted only when the underlying gesture is detected. In this

model, we need three entities: (1) a Gesture Identifier which is
a trained classifier that can identify a gesture; (2) a Permission
Controller that checks for the permission token; and (3) a
Gesture Manager that communicates with the hardware, gets
the phone movement data from the sensors and provides the
analysis results to the Permission Controller.

The Permission Controller stands in front of the default
Android permission granting system. When an app request
to access a sensitive resource, the Permission Controller will
intercept the request. The Permission Controller then checks
the permission token associated with the request. It forwards
the request to the Android permission system only when
the request consists of the permission token. Otherwise it
interacts with the Gesture Manager to check whether a certain
gesture protects the service or not. If it requires, then the
Gesture Manager interacts with the Gesture Identifier that
begins collecting data from different sensors and recognizes
a valid gesture for the corresponding request. If the gesture is
identified as a valid gesture, it attaches a permission token to
the request. Our permission model builds on and extends the
model of [12].

IV. DATA COLLECTION

A. App Design
To develop and evaluate our gesture-centric malware de-

fense mechanism, we first needed to collect data from users to
recognize the various gestures exhibited by them in varying
scenarios. To this end, we created a suite of four separate
apps , each of which collects the data from users while:
(1) making/answering phone calls (the Call App), (2) taking
pictures using the phone’s camera (the Snap App), (3) reading
NFC tags via tapping (the Tap App), and (4) various random
movements and activities captured at random times or in
controlled settings (the Snoop and Control App). The app
supports Android OS 4.0 (API Level 14) or later. The data
collected from this app system is used to recognize the Call,
Snap and Tap gestures, and to determine the possibility of these
gestures matching with one another and with other controlled
activities.

To prevent the overuse of sensors and excessive drainage
of the battery, the periods of recording data must be limited
to the events identified as the capture periods. Android pro-
vides/throws an intent to all listening applications whenever
the user intends to perform certain activities. Hence, we
configured the app to trigger the sensor readings whenever
a corresponding event occurs. Once the event is received, the
data from sensors are recorded as shown in Figure 2. The
specifics of our apps are discussed below.

Call App: The phone calling intent is triggered when the call is
initiated/answered and the state becomes “OFFHOOK”. With
this intent, the app starts recording the sensor data. This means
that the user has made/answered the phone and the associated
Call gesture, i.e., the motion to bring the phone to the ear,
has been initiated. The app stops reading sensor data as soon
as the proximity sensor value changes indicating the phone
has reached the ear of the user. To preserve the integrity of
the data, calls made using a headset or in the speaker phone
are not considered since the motion expected for answering
the phone is not likely to be exhibited during these events. In
such cases, we need a fallback mechanism (see Section VI).



Fig. 2. Data Collector Flowchart (horizontally laid out to optimize space)

Snap App: In the Android system, the camera hardware can be
used by any application that is registered with the permission to
use it in its manifest file, i.e., there is no system-wide intent
that can be intercepted by another application any time the
camera is in use. Because of this restriction, we developed
a custom application which is to be used as an alternative
to other camera applications to test our hand movement
gestures. The camera is capable of capturing the intent to
start the camera “MediaStore.ACTION IMAGE CAPTURE”.
Once the camera is started, the sensor data is recorded until
the user either exits the screen or takes a picture. A flag
is set while the camera is on, that is changed once either the
application exits the screen or the user takes a picture, at which
point the sensors are stopped.

Tap App: For reading NFC, our app waits for the NFC intent
and starts recording the sensor data as soon as this intent is
captured. Since the gesture/motion between the first time a
device detects NFC tag and stops motion is very short, we
captured the data for four seconds after it detects NFC tag.
In our scheme, the gesture detection may be too late to be
captured while the transaction may have already taken place
through NFC. For this, we can place the received NFC data
in quarantine or stall the NFC command received until the
gesture is fully detected and analyzed if it is a valid gesture.
Snoop and Control App: Along with different gestures, the
app system also records data from various sensors at random
point of times in order to compare these gestures with other
activities. We refer to this data as “Snoop”. To verify that our
classifiers are indeed robust, we need to test them with the
active motion data (besides the random Snoop events) which
is different from the Call, Snap and Tap gestures, but still may
have a chance to match with these gestures. For this purpose,
we added extra features in our app system to collect controlled
data (referred to as Control gestures). It provides a text box
for the tester to specify the activity being performed and once
the button is pressed for recording, it records all the sensor
data for ten seconds.

The app displays the count of how many times each gesture
has been performed and provides a button to upload the
recorded gesture data to our server. The app is designed to
upload the data at regular intervals (24 hours). A user can also
explicitly upload the data by pressing the upload button.

B. Data Collection Procedures
We used our data collection app system to extensively

collect data for Call, Tap and Snap gestures as well as various
Control activities. We distributed the apps to volunteers who
were willing to provide the sensor data collected from their
devices through their normal activities. We distributed the app
to the users in our respective Universities in US and Finland.
Before distributing the app to these users, we explained what
sensor data was being recorded, for how long it was recorded,
at what occasions it was recorded and for what purpose the data
was being used. Those who consented to our explanation were
provided with apk files for the installation. There were a total

of 23 users recruited for our study. They were students of the
Computer Science departments of the two Universities. Due to
the real-world nature of our data collection, it was challenging
to recruit users for our study, and, as such, our sample size
is slightly lower than a typical lab-study, but still sufficient
to demonstrate the promising feasibility of our approach.
The devices used by the participating students were popular
Android smartphones which have all the sensors needed for
our tasks. Their devices had Android OS 4.0 (API 14) or later
versions. Not all users could provide the required amount of
data corresponding to all three of our apps (30 calls, 30 snaps
and 30 taps).

Our experiment for the Call gesture was performed in real-
world settings, i.e., the data was recorded when the volunteers
made or received calls under normal use. We collected the data
from each user until we got minimum of 30 samples for each
gesture. This took about a month for most users. The Call App
is fired whenever the participant made/received phone calls as
explained in Section IV-A. Along with recording the sensor
data when user made/received a call, it also collected snoop
data at regular intervals. The app notifies the user whenever
the sensor data is being recorded by displaying an icon with
a message in the notification bar.

In a similar manner, we provided the Snap App to the users
to collect data in real-world settings. They were asked to take
pictures using our Snap App instead of the original camera
app conforming to real-world settings. However, following this
data collection methodology, we obtained little amount of data
during the first phase of data collection. We came up with two
conjectures for collecting so little data from such use of the
Snap App. First, a user might take many pictures when she is
on vacation whereas during normal routine she might not take
any pictures for weeks. Second, the app we developed was
inferior to the default camera app developed by smartphone
manufacturers. Our app did not provide various features (e.g.,
face recognition, touch focus, zoom in/out or HDR mode),
usually provided by the default camera app. Therefore, users
might have preferred the default camera app to Snap App.
Hence, although the Snap experiment could have been done in
real-world settings, we had to ask volunteers to take pictures in
a lab setting mimicking real-world scenarios with our app. We
posted a photo of “Mona Lisa” in the lab and asked volunteers
to take her mugshot. Thus, our Snap experiment is a semi-
controlled experiment. We observed that some users preferred
to take snaps in landscape mode while other preferred portrait
mode.

For the Tap experiment, we provided our Tap App to the
volunteers. All of our participants possessed NFC enabled
smartphones. However, since the NFC reader was not widely
used in real life or by merchants, we had to limit our
experiment to the lab settings. We attached a NFC tag in the
student lab and asked users to tap on the tag at regular periods.
Whenever user tapped the NFC tag, Tap app handled the NFC
intent as discussed in Section IV-A. User held back the device



TABLE I. SENSORS UTILIZED FOR GESTURE DETECTION

Type Sensor Description
Motion Accelerometer (A) The acceleration force including gravity
Motion Gyroscope (Gy) The rate of rotation
Motion Linear Acceleration (LA) The acceleration force excluding gravity
Motion Rotation Vector (R) The orientation of a device
Motion Gravity (G) The gravity force on the device
Position Game Rotation (GR) Uncalibrated rotation vector
Position Magnetic Field (M) The ambient magnetic field
Position Orientation (O) The device orientation
Environment Pressure (P) The ambient air pressure

as soon as the app displays the toast message “NFC Detected”.
The App notifies about the data recording in notification bar.

Although we collected snoop data, we needed to make
sure our app is robust against different kind of user activities.
Since most of the random Snoop data might correspond to
the device being stationary with no noticeable change in any
sensor data, it might lead to false belief that our gesture
classifiers were good enough to classify. Hence, we set out
to evaluate the likelihood of false positives under different
activities. We conducted several tests to emulate different user
activities which might have a chance to match the Call, Snap
or Tap gestures. For this experiment, our Control App was
set to collect the sensor data for ten seconds as discussed
in Section IV-A. We (volunteers) then performed different
activities such as walking (upstairs/downstairs), running and
jumping. We also mimicked reading phone’s screen when there
is a notification on device due to email or SMS, i.e., picking
up the phone from table/desk to check message. Moreover, we
mimicked writing email/SMS, and playing games in different
orientations (landscape/portrait). We also performed a “drop
test” to see if our classifier provides access to the permission
requesting app when phone falls from pocket. For this, we
dropped our phones from height of approximately 40 cm onto
bed/couch. The activities could be exhibited by smartphone
users in their day-to-day life (benign setting). An attacker could
also coerce or fool the users into performing these activities
with the hope that a false positive would occur allowing
malware with access to the resource (adversarial setting).

V. GESTURE DETECTION: DESIGN, AND EVALUATION

In order to detect our Call, Snap and Tap gestures, we
used the machine learning approach based on the underlying
readings of the motion, position and ambient pressure sensors.
We conducted several classification experiments to determine
which off-the-shelf machine classifiers and which underlying
sensor features provide the optimal performance. We used a
total of nine sensors. The sensors used in our analysis and their
descriptions are depicted in Table I.

All of the motion and position sensors used have three
components corresponding to the three physical axes (X, Y, Z)
at each instance. We calculated the scalar value, i.e., the square
root of the sum of squares for each instance, which captures
the significance of all the three axes. From this scalar value
for each instance, we calculated mean and standard deviation
for each of the sample for our different gestures, such as
Call, Snap, Tap, Control and Snoop. This gave us eighteen
features which we used for training and testing various off-
the-shelf classifiers using Weka. We developed a Java program
that utilizes Weka library to test different classifiers across
different sensors subset that would result in best accuracy.
We tested different machine learning algorithms provided by
Weka: Trees – Logistic Model Trees (LMT), Random Forest

(RF) and Random Tree (RT); Functions – Logistics (L) and
Simple Logistic (SL), and Bayesian Networks – Naive Bayes
(NB), on all sensors subsets.

The eighteen features were used as input to train each
classifier to differentiate Call, Snap and Tap gestures from each
other and from other gestures collected. We evaluated three
training models for the classification task: (1) user-specific
model, (2) device-specific model and (3) generalized model.
The user-specific model requires each individual user to train
a classifier herself before using the app. The device-specific
model would require the app developer to build specific
classifiers for different phone models. The generalized model
uses all the data from all different devices and all users to a
build global classifier. These models have their own pros and
cons. User-specific model would give better accuracy as it is
tailored to an individual user but will require the user to train
the classifier before using the system. The other two models
do not have a user-centric training phase and will work right
after the user installs the app, but the accuracy of this model
might be lower than the user-specific model.

In all of the classification tasks, the positive class corre-
sponds to Call/Snap/Tap and the negative class corresponds to
other gestures (referred to as “Others”). Therefore, true positive
(TP) represents Call/Snap/Tap that is correctly classified as
Call/Snap/Tap, true negative (TN) represents Others that is
correctly classified as Others, false positive (FP) represents
Others misclassified as Call/Snap/Tap and false negative (FN)
represents Call/Snap/Tap misclassified as Others.

As performance measures for our classifiers, we used Pre-
cision, Recall and F-measure (F1 score), as shown in Equations
1 & 2. Precision measures the security of the proposed system,
i.e. the accuracy of the system in detecting the malware. Recall
measures the system usability as low recall leads to high
rejection rate of legitimate users’ actions. To make our system
usable, ideally we would like to have recall as close as 1.

precision =
TP

TP + FP
; recall =

TP

TP + FN
; (1)

F -measure = 2 ∗
precision ∗ recall

precision + recall
(2)

A. Call Detection
For the Call gesture, we could receive the desired data, i.e.,

the one corresponding to 30 (incoming/outgoing) phone calls,
from 14 users, as discussed in Section IV-B.
User-Specific Model: We divided the data into fourteen sets
based on the users’ ids. In order to build a classifier to
distinguish Call from Other gestures for each set, we define
two classes. The first class has the Call data from each user,
and the other class contains the data collected from Snap,
Tap, Snoop from the same user and the Control data collected
from three out of the fourteen users. The average time for
the collected Call readings was around one second, so we
compared it with one second of every other gesture. To find
the best subset of features and classifiers, we applied all the
combination of sensors subsets and classifiers (specified above)
to each of the fourteen user sets. The best features and the
measurement values are calculated from running a 10-fold
cross validation as shown in Table II. The gesture detection
performance can be termed as quite good. The recall and
F-measure of the classifiers were on average 0.95 and 0.92



TABLE II. RESULTS OF USING THE OPTIMAL FEATURE SUBSET IN THE
CLASSIFICATION OF CALL AND OTHERS

Classification User ID Classifier Features Precision Recall F-
Model /Device Subset Measure

1 L A,G,LA,P 0.91 0.97 0.94
2 SL A,G,LA,O,P 0.97 0.93 0.95

User- 4 RT GR,Gy,LA 0.87 0.90 0.89
Specific 5 RT GR,LA,O,P,R 0.87 0.83 0.85

6 RF G,LA,P,R 0.83 1.00 0.91
7 SL G,LA,M,P 0.88 0.97 0.92
9 RF A,Gy,M,P,R 0.94 0.97 0.95
11 RT A,G,Gy,M,P,R 0.85 0.97 0.91
12 RF G,Gy,LA,M,P 0.79 0.90 0.84
13 RF G,GR,M,P 1.00 0.97 0.98
14 RF GR,LA,M,R 0.97 1.00 0.98
15 RF LA,M,P,R 0.88 0.93 0.90
16 L G,Gy,M,P,R 0.97 1.00 0.98
20 RF G,Gy,P 0.88 0.93 0.90

Google RF G,Gy,LA,R 0.90 0.83 0.86
Device- Nexus
Specific Samsung RF A,GR,G,Gy, 0.83 0.88 0.86

Galaxy P,R
HTC RF GR,LA,M,R 0.97 1.00 0.98

Generalized ALL RF A,GR,LA,M,R 0.92 0.83 0.87

respectively. While the user is performing a Call gesture, he
moves the phone which can be measured by the change in the
acceleration and air pressure applied on the device. For this
reason, Linear Acceleration and Pressure appear in almost all
of the best sensors subsets. The Call gesture is unique per user,
as shown in a prior work [6] (see Section VII), which justifies
why different sensors subset works well for different users.
Device-Specific Model: We grouped the data from the users
who used the same devices. Seven users out of the fourteen
users used Google Nexus, six used Samsung Galaxy and one
used HTC. As in the previous model, we applied all subset
of features and different classifier onto these resulting three
data sets. The best features and the measurement values are
calculated from running a 10-fold cross validation are shown
in Table II. Combining the data from different users degrade
the classifiers accuracy. The recall, precision and F-measure
were above 0.83 for all the classifiers. The sensor subset for
each device is subset of the sensors used by those users. For
example, user 5, 6, 12, 15, 16 and 20 are the users who had
Samsung Galaxy devices, therefore the best classifier subset
for Samsung Galaxy is a subset of the sensors used by those
users. User 14 is the only user who had HTC device. This is
why the result for HTC is same as that for user 14.
Generalized Model: We combined the features from all the
user into a single dataset. We used these features to generate
a generalized classifier. The results are shown in Table II
(last row). Similar to device-specific model, aggregating the
data from different users degrades the classifier accuracy. The
recall, precision and F-measure were all above 0.83.
B. Snap Detection

For the Snap gesture, we collected the data from 19 users
as described in Section IV-B. Each of these users performed
30 Snap operations. Similar to the Call gesture, we experiment
three different classification settings for the Snap gesture.
User-Specific Model: We divided the data into nineteen sets
based on the user id. Then, we built a classifier to distin-
guish the Snap gesture from other gestures collected by Call,
Snap, Snoop and Control apps for each of the sets. The
average time taken by the users to take a picture was four

TABLE III. RESULTS OF USING THE OPTIMAL FEATURE SUBSET FOR
THE CLASSIFICATION OF SNAP AND OTHERS

Classification User ID Classifier Features Precision Recall F-
Model /Device Subset Measure

1 RF P,Gy,A,R,LA 0.97 1.00 0.98
2 SL Gy,O,LA 0.97 1.00 0.98
3 NB M,P,GR 0.97 1.00 0.98

User- 4 L G,P,M,GR 1.00 1.00 1.00
Specific 5 NB A,M,GR 1.00 1.00 1.00

7 RF A,P,M 0.97 1.00 0.98
8 NB O,A,M 1.00 1.00 1.00
9 L A,M,LA,GR 0.97 1.00 0.98

10 RF GR,M,O,P 0.97 1.00 0.99
11 RF G,Gy,P 1.00 1.00 1.00
12 RF A,G,Gy,P,R 1.00 1.00 1.00
13 RF GR,P 0.97 0.93 0.95
14 RT A,GR,G,R 0.91 1.00 0.95
16 SMO M,P,R 1.00 0.97 0.98
18 L A,LA,P 0.97 0.97 0.97
19 RF GR,Gy,P 0.97 1.00 0.99
21 RT G,LA,O,P,R 1.00 1.00 1.00
22 RF GR,Gy,P 1.00 1.00 1.00
23 NB A,GR,M,R 1.00 0.97 0.98

Google RF A,GR,G,M, 0.89 0.95 0.92
Device- Nexus O,P
Specific Samsung RF G,Gy,M,O,P 0.96 0.98 0.97

Galaxy
HTC RT A,GR,G,R 0.91 1.00 0.95
LG RF LA,M,P,R 1.00 0.98 0.99

Generalized ALL RF A,LA,M,O,P 0.89 0.93 0.91

seconds. Therefore, we compared the Snap gesture with the
four seconds of each other gesture. The best features and the
measurement values are calculated from running a 10-fold
cross validation as shown in Table III. The precision, recall
and F-measure are on average 0.98, 0.99 and 0.98 respectively.
While the user is taking a picture, she moves the phone and
adjusts the orientation of the phone, this can be measured by
the Accelerometer, Pressure, Orientation, Gyroscope, Magnetic
Field, Rotation and Game Rotation sensors. For that reason, all
the sensors subset includes at least one of those sensors. The
accuracy of Snap classifier is better than for the Call, which
might be because the average time for Snap is four seconds
and that for Call is one second.
Device-Specific Model: We aggregated the users’ data based on
their devices. The best features and the measurement values are
calculated from running a 10-fold cross validation are shown
in Table III. The F-measure of the classifiers is above 0.92 for
all the classifiers. We had only one user who had HTC phone
in the Snap experiment; the result for the HTC is same as the
results for user 14. For the other devices, the sensor subset is
a subset of the best sensors subset of different users. Again,
the classifier accuracy degraded when we combined data from
different model phones.
Generalized Model: Here, we grouped the features from all
the users into a single dataset. The results are shown in the
last row of Table III. The precision, recall and F-measure are
0.89, 0.93 and 0.91 respectively. The sensor subset consists of
subset of the sensors used in the user-specific model.

C. Tap Detection
For the Tap gesture, we could collect the data from 20 users

as described in Section IV-B. Each of these users performed 30
NFC tappings. We then performed three different experiments
to evaluate our three classification models for the Tap gesture.



TABLE IV. RESULTS OF USING THE OPTIMAL FEATURE SUBSET FOR
THE CLASSIFICATION OF TAP AND OTHERS

Classification User ID Classifier Features Precision Recall F-
Model /Device Subset Measure

1 RT G,M,GR 1.00 0.97 0.98
2 NB P,M 1.00 0.97 0.98
3 RT P,A,GR 1.00 0.97 0.98

User- 4 NB GY,M,A 1.00 0.97 0.98
Specific 5 NB P,M 1.00 1.00 1.00

6 RF G,R,,GR 1.00 1.00 1.00
7 RF P,O,M 0.97 1.00 0.98
8 NB P,M 1.00 1.00 1.00
9 NB GR,M,P 0.94 1.00 0.97
11 NB A,Gy,M 0.97 1.00 0.98
12 NB A,G,O,P,R 1.00 1.00 1.00
13 RF O,P,R 0.92 0.96 0.94
14 RF A,LA,M 0.82 0.93 0.88
16 RF GR,M,O,P,R 1.00 0.97 0.98
17 RF A,GR,G,M,O 0.91 0.97 0.94
18 RF A,GR,G,M,O 0.97 1.00 0.99
19 L GR,G,O,P 1.00 1.00 1.00
21 RT M,P 0.97 1.00 0.98
22 RF Gy,O,P 1.00 1.00 1.00
23 RT GR,Gy,P 0.86 0.97 0.91

Google RF GR,G,Gy,M, 0.93 0.92 0.92
Device- Nexus O,P,R
Specific Samsung RF LA,M,O,P,R 0.96 0.97 0.96

Galaxy
HTC RF A,G,LA,M 0.82 0.93 0.88
LG RF A,G,M,O,P 0.96 1.00 0.98

Generalized ALL RF GR,G,M,O,P 0.89 0.90 0.89

User-Specific Model: We divided the data into twenty sets ac-
cording to the user id. Then, we built a classifier to distinguish
the Tap gesture from other gestures collected by Call, Snap,
Snoop and Control apps for each of the sets. The best features
and the measurement values are calculated from running a 10-
fold cross validation as shown in Table IV. The Tap gesture
requires the user to move his device near to the NFC tag, the
reading then starts, the user should keep the device on that
position and then move it far from the NFC tag. Normally the
users hold their devices in certain orientation while reading the
NFC tag, finding the comfortable way to attach the NFC sensor
in their device to the NFC tag. The phone movements can
be measured by the change in Linear Accelerometer, Gravity,
Accelerometer and Pressure sensors, and similar to Snap, the
orientation can be measured by Orientation, Magnetic Field,
Rotation and Game Rotation sensors. For that reason, each
of the subsets includes at least one of each of those sets of
sensors. The recall and F-measure were on average 0.98 and
0.97, respectively, which indicate very good performance.
Device-Specific Model: We aggregated the users’ data based on
their devices. The best features and the measurement values are
calculated from running a 10-fold cross validation are shown
in Table IV. The average recall and F-measure are 0.96 and
0.94 respectively for all of the classifiers.
Generalized Model: We grouped the features from all the users
into a single dataset and we used these features to generate a
generalized classifier. The results are shown in Table IV (last
row). The precision, recall, and F-measure are above 0.89. The
best sensors subset consists of the common sensors between
all device models and some additional sensors.

VI. DISCUSSION
Local vs. Remote Classification: Our approach is based
on machine learning. Once the machine learning classifier is

trained offline, we use it to identify different gestures in real-
time. This classifier testing phase can either be performed
on user’s device locally or outsourced to a remote server.
The first approach allows the device to independently identify
the gesture without relying on a third-party server and data
connectivity. However, it may require more resources for the
testing task. This is in line with many implementations that
use machine learning for the purpose of malware detection.
There already exist some apps, such as MyWeka in the Android
Play store, which provides Weka implementation with limited
machine learning classifiers. Similarly, [9] provides a weka
library to implement machine learning approach for Android.

In the remote classification approach, whenever there is a
need to identify a gesture, the sensor data would be sent to
the server, which will perform the classification and provide
the result back to the device (all communication between
the device and server takes place over a secure channel). A
similar approach of using remote server/cloud has already been
proposed by Oberheide et al. for cloud based antivirus [15, 16].
The advantage to this approach is that the device does not
require extra resources for testing the gesture and running the
classifier. However, it needs to have a data connection. In case
there is no data connection, the system may fall back to asking
user for explicit gesture such as hand-waving/rubbing [12, 23].
A drawback of this approach is the need to trust the remote
service – if this service is malicious and colludes with the
device malware app, it will completely undermine the security
of the system. The delay introduced in transmitting the sensor
data to the server may reduce system’s usability.
Power Efficiency: Since the battery-life is one of the most
important factors when using smartphones, the power con-
sumed by our approach should be minimal. As the gesture
detection procedures in our approach lasts for no more than
a few seconds, i.e., the sensors are activated for an average
of one second to detect Call and four seconds to detect Snap
and Tap, our approach is indeed quite power-efficient. We start
the sensors when there is an intent for the activity and stop
the sensors as soon as there is another intent which indicates
that gesture has been performed, such as proximity change
indicating phone is near the ear, clicking of the camera button,
etc. Once the sensor recording is stopped, the data is fed
to Gesture Identifier for gesture recognition as described in
Section III-2. The detection approach itself (i.e., the testing
phase of the classification task) is very light-weight and
requires negligible amount of power.
Quarantine State: In case of NFC reading, when user moves
the phone in close physical proximity (few cms) of a tag,
i.e., when the OS detects that a tag is nearby, our Tap
gesture detection procedure starts. However, the time duration
between the detection of the presence of the tag and the
tapping on the tag might be too short for the gesture to be
meaningfully recognized. To address this situation, we rely
upon lazy authentication, i.e., the tag information is read by the
OS but kept in a quarantine state until the full tapping gesture
is recorded and analyzed. Since tapping also involves bringing
back the phone from tapping position to normal position, we
also incorporate this movement into our Tap gesture. Recall
that we used four seconds of Tap data to correctly identify the
Tap gesture. The data/command that NFC tag provides to the
smartphone will not be executed right away when the phone
detects the NFC tag. Rather, the system would display an “NFC



read” message to the user so that the user will bring his device
back to normal position. In the meanwhile, the message read
from NFC tag will be placed in quarantine state/storage. Once
the gesture has been correctly identified, the corresponding
NFC data needs to be processed, otherwise the data must be
dropped and not delivered to the application.
Fall-Back: Our detection approach has very low FNR with
high recall. However, there might be certain situations where,
because of the user or device orientation, the activity per-
formed by the user is so distinctive that the detection mech-
anism may miss classify the gesture. For instance, the user
might be on a boat or bus, or on a hammock where the sensor
data may be completely different compared to when user is in
a normal position. In cases when the phone is connected to
a headphone/Bluetooth headset or when phone is in speaker
mode, the user does not need to move the phone. In cars, the
user may not be able to physically reach the phone. Also,
in case of emergencies, users might perform the gesture in a
different way than in normal scenarios, which may lead to a
false negative. In these scenarios, when the gesture detection
mechanism fails, there is a need to fall back to allow the user
to access the desired resource. This can be solved either by
prompting the user to press a “Yes/No” button, or by asking the
user for the explicit gestures such as hand-waving or rubbing,
as proposed in [12, 23]. In situations where users are not able
to make the gestures, for example under extreme emergency, a
voice command could be used. Also, the current smartphone
OSs allow users to dial emergency numbers even without
unlocking the phone. In a similar fashion, we can bypass our
gesture detection module when a user presses the emergency
dial button on the phone.
Benign Automated Access: There may be some apps/services
which require automation. For example, a user may want to
wish his friends “Happy Birthday” on their birthday by leaving
a voice message where an app makes an automated call at
midnight. In this case, the gesture will be missing and the
app will not be granted the permission. For these kinds of
services which need automation, the permission token can be
provided to the app at the time when the user provides the
gesture associated with it, though the related activity needs to
be performed at some later point of time. For example, the
permission token can be granted at the time when the user
records the birthday message. The user can set the time when
the activity, let’s say Call, needs to be done. When the call is
performed by the app, the Permission Controller checks if it
already has the permission token. If it has the token, it skips the
gesture recognition procedure otherwise it will communicate
with Gesture Manager and follow the protocol as before to
allow/deny the access to resources/services.

Social Engineering Attacks: The high precision shown in
Section V implies that there is little chance that an applica-
tion can perform Call, Snap or Tap without user knowledge.
However, it is possible for a malware developer to perform
social engineering attack to fool the user into providing a valid
gesture. For example, malware developer can design a game
which asks the user to move the phone in ways that emulate
either Call, Snap or Tap. Our system is vulnerable under a
false positive, i.e., when the malware is continuously request-
ing a permission to access the resource and the movement
of the phone is such that the sensor data satisfies the gesture
detection algorithm. In this situation, the malware will gain

access to the resource. Such attacks require malware to wait
constantly for the gesture synchronized with the benign app
which makes the likelihood of detection of such an app easier
by OS. Nevertheless, our defense will still significantly raise
the bar against many existing malware attacks.

VII. RELATED WORK
The majority of related prior work focuses on either pre-

venting a device from getting infected or detecting a malware
as soon as it has been installed on the device. The two
most common defense approaches to detect malware are static
analysis [22, 25] and dynamic analysis [3, 4]. Both detection
techniques have their own drawbacks. Malware authors can
avoid static analysis detection through simple obfuscation,
polymorphism and packing techniques. Dynamic analysis,
although more resilient, is still a posteriori approach which is
quite risky to adopt since malicious parties would have already
obtained the valuable information.

A user or an app can be authenticated in numerous ways,
such as passwords or biometrics. However, these approaches
are not user-transparent (e.g. passwords and biometrics) and
may not be lightweight or sufficiently robust (e.g., biometrics).
CAPTCHAs may also be used for human-vs-bot identification,
but are not user-transparent besides being hard for the users,
and many variations being vulnerable to automated and relay
attacks. Our transparent gestures, on the other hand, address
the problem of human-vs-bot identification (not user authenti-
cation) and are lightweight, efficient and robust.

Chaugule et al. [5] share a similar philosophy as our work.
They look for hardware interrupts to identify software initiated
actions vs hardware initiated actions for SMS and audio
services. The key/touchscreen press action generates hardware
interrupts which are used to identify if the request is initiated
by human or malware. The problem with this approach is that
it requires explicit human interaction generating the hardware
interrupts which may not be always present, such as when user
taps onto an NFC tag. The main difference between their work
and our work is that they check if there is any user activity
while we check if there is any user-aware activity.

Roesner et al. [19] proposed user-driven access control
in which an app is granted permission when Access Control
Gadgets (ACGs) capture user’s permission granting intent.
ACGs are UI elements exposed by each user-owned resource
for applications to embed. In this work , whenever there is
authentic user interaction with corresponding ACG, it grants
the permission to an app to access the corresponding resource
while our approach grants the permission whenever a user
gesture is captured. It requires not only kernel level changes
to grant the permission based on ACGs but also require
application level modification, and suggests applications to
use standard icons for ACGs. Our design has an advantage
over their work in that our work requires no application
level changes and supports services such as NFC which do
not have any specific UI elements or ACGs associated with
them. Additional ACGs for UI interaction is required for their
design to work with the services like NFC.

Conti et al. [6] have done work similar to ours, but in the
context of user authentication (not user-vs-bot identification).
They investigated if a user movement while making/answering
a phone call can be used as a biometric authentication measure.



Their work [6] uses Dynamic Time Warping (DTW) algorithm
to analyze and detect the call making/answering gesture. Their
experiments were done in a controlled setting and no real-
world scenario has been captured. In contrast to their data ,
our data has been collected from users in real-life scenarios.
Besides this, our algorithm uses machine learning classifiers to
classify the data and uses multiple sensors as features of these
classifiers. They consider only accelerometer and orientation
sensors to detect the gesture while our approaches consider all
the motion sensors and the position sensors as well as pressure
sensor for better accuracy. Furthermore, our system involves
gestures associated with NFC and camera access, in addition
to phone dialing.

Li et al. [12] and Shrestha et al. [23] have shown that
different gestures can be used for human-vs-bot identification.
Shrestha et al. captured explicit hand waving gesture via
light and accelerometer sensors. In the work of Li et al.,
implicit gestures, such as tapping, have been used to provide
permission to an app which uses NFC, while explicit gestures,
such as hand waving/rubbing, are captured to grant permission
to send SMS and other services where no implicit gesture is
involved. They capture the gestures using accelerometer and
proximity sensors. Li et al. generate a template from user
tapping, and then later calculate correlation between template
and test data to make user-vs-bot decision. Their work only
uses linear accelerometer sensor to identify the tapping gesture
while our work uses all motion gesture provided by Android
API to identify tapping, snapping and calling gestures. Also,
we use machine learning to detect a gesture which has an
advantage compared to storing a template and using threshold
to differentiate the activity.

VIII. CONCLUSION AND FUTURE WORK

We presented an efficient and lightweight approach to
protect smartphone users against malware which may com-
promise user’s privacy or cause monetary loss, specifically
concentrating on phone calling, camera and NFC services.
Given that these services are very popular among users and
might already be under attack by malware, we believe that
protecting them is a significant step. We proposed the use of
transparent gestures associated with calling, snapping and NFC
tapping as a means to defeat malicious applications attempting
to misuse the underlying resources, but still allowing the user
to have full access when desired. A key usability advantage of
our approach is those users do not need to be concerned about
our (human-vs-bot) authentication process as it takes place in
the background. Besides malware, this approach can protect
the users from unintentional calling, snapping and tapping.

The results show that our gesture detection mechanisms can
fairly detect the three gestures from each other, and from other
benign or malicious activities. In the future, we believe that
gestures associated with other smartphone services, such as
sending SMS or email, or web browsing, can also be integrated
with our system. As new sensors become available on these
smart devices, subsequent work may use the different sensors
to identify other transparent gestures and further improve the
accuracy for the calling, snapping and tapping gestures.
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