Lecture 3.2: Induction, and Strong Induction

CS 250, Discrete Structures, Fall 2015

Nitesh Saxena

Adopted from previous lectures by Cinda Heeren, Zeph Grunschlag

Course Admin

- Mid-Term 1
 - Graded; to be returned back today
 - Solution has been provided
- HW2
 - Solution will be provided very soon
 - We are grading it
Outline

- More practice: induction
- Strong Induction

Induction: some more exercises (Rosen)

- Show that $n < 2^n$, for $n=0, 1, 2, ...$

- Prove (generalized De Morgan’s)

$$
\bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} A_i
$$
Slightly harder exercise

Prove that if a set S has $|S| = n$, then $|P(S)| = 2^n$

Base case ($n=0$): $S=\emptyset$, $P(S) = \{\emptyset\}$ and $|P(S)| = 1 = 2^0$

Assume $P(k)$: If $|S| = k$, then $|P(S)| = 2^k$

Prove that if $|S'| = k+1$, then $|P(S')| = 2^{k+1}$

$S' = S U \{a\}$ for some $S \subseteq S'$ with $|S| = k$, and $a \in S'$.

Partition the power set of S' into the sets containing a and those not.

We count these sets separately.

Slightly harder exercise (contd)

Assume $P(k)$: If $|S| = k$, then $|P(S)| = 2^k$

Prove that if $|S'| = k+1$, then $|P(S')| = 2^{k+1}$

$S' = S U \{a\}$ for some $S \subseteq S'$ with $|S| = k$, and $a \in S'$.

Partition the power set of S' into the sets containing a and those not.

$P(S') = \{X : a \in X\} U \{X : a \notin X\}$

$P(S') = \{X : a \in X\} U P(S)$

Since these are all the subsets of elements in S.

Subsets containing a are made by taking any set from $P(S)$, and inserting an a.

10/20/2015 Lecture 3.2 -- Induction, and Strong Induction 5

10/20/2015 Strong Induction 6
Slightly harder exercise (contd)

Assume P(k): If \(|S| = k\), then \(|P(S)| = 2^k\)

Prove that if \(|S'| = k+1\), then \(|P(S')| = 2^{k+1}\)

\(S' = S \cup \{a\}\) for some \(S \subseteq S'\) with \(|S| = k\), and \(a \in S'\).

\[
P(S') = \{X : a \in X\} \cup \{X : a \notin X\}
\]

Subsets containing \(a\) are made by taking any set from \(P(S)\), and inserting an \(a\).

\[
|P(S')| = |\{X : a \in X\}| + |P(S)|
\]

So \(|\{X : a \in X\}| = |P(S)| \)

\[
= 2 \cdot |P(S)| = 2 \cdot 2^k = 2^{k+1}
\]

Example

Recall the Fibonacci sequence:

\(\{f_n\} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots\)

defined by \(f_0 = 0\), \(f_1 = 1\), and for \(n > 1\)

\(f_n = f_{n-1} + f_{n-2}\).

Notice that every third Fibonacci number is even:

LEMMA: For all natural numbers \(n\), \(2 | f_{3n}\).
Example

Proof. Base case $n = 0$.

$f_{3 \cdot 0} = f_0 = 0$ which is divisible by 2

Induction step, $n > 0$:

Assume F_{3k} is divisible by 2

$F_{3k+3} = f_{3k+2} + f_{3k+1} = (f_{3k+1} + f_{3k}) + f_{3k+1}$

$= 2f_{3k+1} + f_{3k}$

By hypothesis, $2 | f_{3k}$ therefore

$2 | (2f_{3k+1} + f_{3k})$, so $2 | f_{3k+3}$, and the proof is complete.

Strong Mathematical Induction

If

- $P(0)$ and
- $\forall k \geq 0 \ (P(0) \land P(1) \land \ldots \land P(k)) \rightarrow P(k+1)$

Then

- $\forall n \geq 0 \ P(n)$

In our proofs, to show $P(k+1)$, our inductive hypothesis assures that ALL of $P(0), P(1), \ldots, P(k)$ are true, so we can use ANY of them to make the inference.
Strong Induction Example

Sometimes a stronger version of induction is needed, one that allows us to go back to smaller values than just the previous value of n. E.g. consider the Fibonacci sequence vs. the sequence 2^n:

$$\{f_n\} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$$
$$\{2^n\} = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512$$

LEMMA: For all n, $f_n < 2^n$

Proof.

- **Base $n = 0$:** $f_0 = 0 < 1 = 2^0$

- **Induction $n > 0$:**
 - Assume $f_k < 2^k$
 - Now, $f_{k+1} = f_k + f_{k-1} < 2^k + f_{k-1}$

Q: Now what?
Strong Induction Example

A: Would want to apply same formula to $k-1$. But strictly speaking, can’t because induction hypothesis only let us look at previous domino. This limitation on induction need not be so: If we could assume that the first k dominoes falling implies that the $k+1$ domino falls, would be able to reduce back to smaller values, as needed here.

Strong induction formalizes this ability.

Strong Induction Example

So now, we can complete stuck proof:

LEMMA: For all n, $f_n < 2^n$

Proof. Base cases (both needed as can’t apply induction step on f_1 since f_{-1} is undefined)

$n = 0$: $f_0 = 0 \times 1 = 2^0 \checkmark$

$n = 1$: $f_1 = 1 \times 2 = 2^1 \checkmark$
Strong Induction
Completing Example

So now, we can complete stuck proof:

LEMMA: For all \(n \), \(f_n < 2^n \)

Proof. Base cases (both needed as can’t apply
induction step on \(f_1 \) since \(f_{-1} \) is undefined)

- \(n = 0 \): \(f_0 = 0 < 1 = 2^0 \checkmark \)
- \(n = 1 \): \(f_1 = 1 < 2 = 2^1 \checkmark \)

Induction \(n > 0 \):

\[f_{k+1} = f_k + f_{k-1} < 2^k + 2^{k-1} \]

applying both \(P(k) \) and \(P(k-1) \)
which can be assumed by strong induction
hypothesis. Doing more algebra:

\[2^k + 2^{k-1} = 2^k(1 + \frac{1}{2}) = 1.5*2^k < 2*2^k = 2^{k+1} \]

Therefore, \(f_{k+1} < 2^{k+1} \)

Another Example (Rosen)

- Prove that every integer > 1 can be
expressed as a product of prime numbers
Today’s Reading

- Rosen 5.2