Course Admin

- Mid-Term 2 Exam
 - Solution will be posted soon
 - Should have the results this week
- HW3
 - Solution will be posted soon
 - Should have the results next week
- HW4 will be posted by this week
 - Due in about 2 weeks
- Will have a 20-pointer bonus problem
Final Exam

- Tuesday, **December 8, 10:45am-1:15pm**, lecture room
 - Please mark the date/time/place
 - Cumulative coverage
- Our last lecture will be on December 3
 - We plan to do a final exam review then
- Note next week is off due to Fall Break/Thanksgiving.

Outline

- Closures
- Equivalence Relations
Closure

Consider relation \(R = \{(1,2),(2,2),(3,3)\} \) on the set \(A = \{1,2,3,4\} \).

Is \(R \) reflexive? **No**

What can we add to \(R \) to make it reflexive? \((1,1), (4,4)\)

\(R' = R \cup \{(1,1),(4,4)\} \) is called the reflexive closure of \(R \).

Closure

Definition:

The closure of relation \(R \) on set \(A \) with respect to property \(P \) is the relation \(R' \) with

1. \(R \subseteq R' \)
2. \(R' \) has property \(P \)
3. \(\forall S \text{ with } R \subseteq S \text{ and } S \text{ has property } P, R' \subseteq S \).
Reflexive Closure

Let \(r(R) \) denote the reflexive closure of relation \(R \).

Then \(r(R) = R \cup \{(a,a) : \forall a \in A\} \)

Fine, but does that satisfy the definition?

1. \(R \subseteq r(R) \) \hspace{1cm} \text{We added edges!}
2. \(r(R) \) is reflexive \hspace{1cm} \text{By defn}
3. Need to show that for any \(S \) with particular properties, \(r(R) \subseteq S \).

Let \(S \) be such that \(R \subseteq S \) and \(S \) is reflexive. Then \(\{(a,a) : \forall a \in A\} \subseteq S \) (since \(S \) is reflexive) and \(R \subseteq S \) (given). So, \(r(R) \subseteq S \).

Symmetric Closure

Let \(s(R) \) denote the symmetric closure of relation \(R \).

Then \(s(R) = R \cup \{(b,a) : (a,b) \in R\} \)

Fine, but does that satisfy the definition?

1. \(R \subseteq s(R) \) \hspace{1cm} \text{We added edges!}
2. \(s(R) \) is symmetric \hspace{1cm} \text{By defn}
3. Need to show that for any \(S \) with particular properties, \(s(R) \subseteq S \).

Let \(S \) be such that \(R \subseteq S \) and \(S \) is symmetric. Then \(\{(b,a) : (a,b) \in R\} \subseteq S \) (since \(S \) is symmetric) and \(R \subseteq S \) (given). So, \(s(R) \subseteq S \).
Transitive Closure

Let $t(R)$ denote the transitive closure of relation R.
Then $t(R) = R \cup \{(a,c) : \exists b (a,b),(b,c) \in R\}$

Example: $A=\{1,2,3,4\}, R=\{(1,2),(2,3),(3,4)\}$.
Apply definition to get:

$t(R) = \{(1,2),(2,3),(3,4), (1,3), (2,4)\}$

Which of the following is true:

a) This set is transitive, but we added too much.
b) This set is the transitive closure of R.
c) This set is not transitive, one pair is missing.
d) This set is not transitive, more than 1 pair is missing.

Transitive Closure

So how DO we find the transitive closure?

Example: $A=\{1,2,3,4\}, R=\{(1,2),(2,3),(3,4)\}$.

Define a path in a relation R, on A to be a sequence of elements from A: $a,x_1,...,x_{i-1},x_i,...,x_{n-1},b$,
with $(a, x_i) \in R$, $\forall i (x_i,x_{i+1}) \in R$, $(x_{n-1},b) \in R$.
Transitive Closure

Formally:
If $t(R)$ is the transitive closure of R, and if R contains a path from a to b, then $(a,b) \in t(R)$

A technique:
- For a set R consisting of n elements, $t(R)$ can be specified by the matrix: $M_R \ V \ M_R^2 \ V \ ... \ V \ M_R^n$
- More efficient method: Warshall's algorithm

Transitive Closure -- Example

- $M_R = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
- $M_R \ V \ M_R^2 \ V \ ... \ V \ M_R^n$?
Equivalence Relations

Example:
Let $S = \{\text{people in this classroom}\}$, and let $R = \{(a,b): a \text{ has same # of coins in his/her bag as } b\}$

Quiz time:
Is R reflexive? Yes
Is R symmetric? Yes
Is R transitive? Yes

This is a special kind of relation, characterized by the properties it has.

Everyone with the same # of coins as you is just like you.

Equivalence Relations

Formally:
Relation R on A is an equivalence relation if R is
- Reflexive ($\forall a \in A, aRa$)
- Symmetric ($aRb \rightarrow bRa$)
- Transitive ($aRb \text{ AND } bRc \rightarrow aRc$)

Example:
$S = \mathbb{Z}$ (integers), $R = \{(a,b): a \equiv b \mod 4\}$

Is this relation an equivalence relation on S?
Have to PROVE reflexive, symmetric, transitive.

Recall: aRb denotes $(a,b) \in R$.
Equivalence Relations

Example:

\[S = \mathbb{Z} \text{ (integers)}, \ R = \{(a,b) : a \equiv b \mod 4\} \]

Is this relation an equivalence relation on \(S \)?

Start by thinking of \(R \) a different way: \(aRb \) iff there is an int \(k \) so that \(a = 4k + b \). Your quest becomes one of finding \(k \).

Let \(a \) be any integer. \(aRa \) since \(a = 4 \cdot 0 + a \).

Consider \(aRb \). Then \(a = 4k + b \). But \(b = -4k + a \).

Consider \(aRb \) and \(bRc \). Then \(a = 4k + b \) and \(b = 4j + c \).

So, \(a = 4k + 4j + c = 4(k+j) + c \).

Equivalence Relations

Example:

- \(S = \mathbb{Z} \text{ (integers)}, \ R = \{(a,b) : a = b \text{ or } a = -b\} \).
 - Is this relation an equivalence relation on \(S \)?
 - Have to prove reflexive, symmetric, transitive.
Equivalence Relations

Example:

- $S = \mathbb{R}$ (real numbers), $R = \{(a,b) : a - b$ is an integer$\}$. Is this relation an equivalence relation on S?
- Have to prove reflexive, symmetric, transitive.
Equivalence Relations

- Example:
 - $S = \mathbb{N}$ (natural numbers), $R = \{(a,b) : a \mid b \}$. Is this relation an equivalence relation on S?
 - Have to prove reflexive, symmetric, transitive.

Equivalence Classes

Example:
Back to coins in bags.

Definition: Let R be an equivalence relation on S.
The equivalence class of $a \in S$, $[a]_R$, is
$[a]_R = \{b : aRb\}$

a is just a name for the equiv class. Any member of the class is a representative.
Equivalence Classes

Definition: Let R be an equivalence relation on S. The *equivalence class* of $a \in S$, $[a]_R$, is

$$[a]_R = \{b : aRb\}$$

What does the set of equivalence classes on S look like?

To answer, think about the relation from before:

- $S = \{\text{people in this room}\}$
- $R = \{(a,b) : a \text{ has the same # of coins in his/her bag as } b\}$

In how many different equivalence classes can each person fall?

Similarly, consider the $a \equiv b \mod 4$ relation

Today’s Reading

- Rosen 9.4 and 9.5