Lecture 2: Cryptography I

CS 336/536: Computer Network Security
Fall 2015

Nitesh Saxena

Course Administration

• Everyone receiving my emails?
• Lecture slides worked okay?
 – Both ppt and pdf versions
• Everyone knows how to access the course web page?
• I am posting the lectures in advance (the morning before the lecture)
 – But, this should not affect the attendance 😊
Course Admin

• No labs this week (labs not active yet)

• We will do a 10-min break around 6:15pm
 – Please remind/shout in case I forget

Outline of today’s lecture

• Cryptography Overview
• Private Key Cryptography: Encryption
• Classical Ciphers
• Block Cipher -- DES
Cryptography

- Etymology: Secret (Crypt) Writing (Graphy)
- Study of mathematical techniques to achieve various goals in information security, such as confidentiality, authentication, integrity, non-repudiation, etc.
- Not the only means of providing network security, rather a subset of techniques.
- Quite an old field!

Cryptography: Cast of Characters

- Alice (A) and Bob (B): communicating parties
- Eve (E): Eavesdropping (or passive) adversary
- Mallory (M): Man-in-the-Middle (or active adversary)
- Trent (T): a trusted third party (TTP)
Today’s Focus

• How to achieve confidentiality by means of cryptography?

Private Key/Public Key Cryptography

• **Private Key**: Sender and receiver share a common (private) key
 – Encryption and Decryption is done using the private key
 – Also called conventional/shared-key/single-key/symmetric-key cryptography

• **Public Key**: Every user has a private key and a public key
 – Encryption is done using the public key and Decryption using private key
 – Also called two-key/asymmetric-key cryptography
Common Terminologies

- Plaintext
- Key
- Encrypt (encipher)
- Ciphertext
- Decrypt (decipher)
- Cipher
- Cryptosystem
- Cryptanalysis (codebreaking)
- Cryptology: Cryptography + Cryptanalysis

Private key model

[Diagram showing the private key model with plaintext input and ciphertext output]

9/2/2015 Lecture 2 - Cryptography - 1

9/2/2015 Lecture 2 - Cryptography - 1
Open vs Closed Design

- Closed Design (as was followed in military communication during the World Wars)
 - Keep the cipher secret
 - Also sometimes referred to as the “proprietary design”
 - Bad practice! (why?)

- Open Design (*Kerckhoffs’ principle*)
 - Keep everything public, except the key
 - Good practice – this is what we focus upon!

Private Key Encryption: main functions

1. KeyGen: $K = \text{KeyGen}(l)$ (l is a security parameter)

2. Enc: $C = \text{Enc}(K,M)$

3. Dec: $M = \text{Dec}(K,C)$
Goals of the Attacker

- Learn the plaintext corresponding to a given ciphertext — **One-Way Security**
- Extract the key — **Key Recovery Security**
- Learn some information about the plaintext corresponding to a given ciphertext — **Semantic Security**
- *Key recovery security and one-way security are a must for an encryption scheme. Semantic Security is ideal.*

Capabilities of the Attacker

1. **No Information** (besides the algorithm)
2. **Ciphertext only**
 - Adversary knows only the ciphertext(s)
3. **Known plaintext**
 - Adversary knows a set of plaintext-ciphertext pairs
4. **Chosen (and adaptively chosen) plaintext** (CPA attack)
 - Adversary chooses a number of plaintexts and obtains the corresponding ciphertexts
5. **Chosen (and adaptively chosen) ciphertext attack** (CCA attack)
 - Adversary chooses a number of ciphertexts and obtains the corresponding plaintexts
Security Model

least attacker capability .. most attacker capability

1<2<3<4<5

weakest cryptosystem .. strongest cryptosystem

• 1 is the hardest and 5 is the easiest attack to perform
• A cryptosystem secure against 5 is the strongest, and secure against 1 is the weakest
• A cryptosystem secure against 5 is automatically secure against 4, 3, 2 and 1

Brute Force Attacks: Key Recovery

• Since the key space is finite, given a pair (or more) of plaintext and ciphertext, a cryptanalyst can try and check all possible keys.
• For above to be not feasible, key space should be large!!
 – How large?
 – Large enough to make it impractical for an adversary. But what is impractical today, may not be so tomorrow. At least 2^{80} – see this paper on “selecting cryptographic key sizes”
Ciphers We Will Study

• Classical ones
 – Substitution Ciphers
 • Caesar’s Cipher
 • Monoalphabetic
 • Polyalphabetic
 – Transposition Ciphers

• Modern ones
 – DES/AES
 – Others...

Caesar Cipher (or Shift Cipher)

• Substitution cipher
• Let messages be all lower case from a through z (no spaces or punctuation).
• Represent letters by numbers from 0 to 25.
• Encryption function
 \[C_i = E(P_i) = P_i + K \pmod{26} \]
 where \(K \) is secret key
• Decryption is
 \[P_i = D(C_i) = C_i - K \pmod{26} \]
Security of Caesar Cipher

- Easy to brute force: size of key-space is 26
 - Not secure against even ciphertext-only attack
 (the one where adversary had the least capability)

Monoalphabetic Substitution

<table>
<thead>
<tr>
<th>P</th>
<th>O</th>
<th>K</th>
<th>E</th>
<th>M</th>
<th>O</th>
<th>N</th>
<th>M</th>
<th>A</th>
<th>S</th>
<th>T</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
</tr>
<tr>
<td>M</td>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>Y</td>
<td>Z</td>
<td>P</td>
<td>O</td>
<td>K</td>
<td>E</td>
<td>M</td>
<td>O</td>
<td>N</td>
<td>M</td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td>T</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
<th>B</th>
<th>U</th>
<th>T</th>
<th>R</th>
<th>B</th>
<th>S</th>
<th>R</th>
<th>P</th>
<th>D</th>
<th>F</th>
<th>T</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Z</td>
<td>P</td>
<td>O</td>
<td>K</td>
<td>E</td>
<td>M</td>
<td>O</td>
<td>N</td>
<td>M</td>
<td>A</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>
Monoalphabetic Substitution

- Key space is large $26! = 4 \times 10^{26}$
 - Quite large, however,
 - Can be broken (not secure against ciphertext-only) using language characteristics!

Polyalphabetic Substitution – Vigenere Cipher

- Use K mono-alphabetic ciphers – E_1, E_2, \ldots, E_K.
- In position i, of plaintext, use cipher E_i.
- Example using Caesar ciphers ...

Plaintext: helloi loveyouwontyou tellmyouname
Key: polytechnicpolytechnicpolytechnicpoly
Ciphertext: wswijhmnv………………………………

- A little harder to break but frequency analysis is possible
- Some well known techniques for determining key length – we will not cover (see text for Kasiski method)
One time Pad or Vernam Cipher: Best Possible Cipher

- If we use Vigenere with key length as long as plaintext, then cryptanalysis will be difficult!
- If we change key every time we encrypt then cryptanalyst’s job becomes even more difficult. **One-time pad** or **Vernam Cipher**.
- How do we get such long keys?
- Such a cipher is difficult to break but not very practical.

Binary Vernam

- plaintext is binary string and key is binary string of equal length, then encryption can be done by a simple XOR operation.

Plaintext:	01010000010001010011
Key:	110101001001100111
Ciphertext:	10000101011000110100

- **If the key is random and is not re-used**, then such a system offers unconditional security – perfect secrecy!
- Intuitively perfect secrecy can be seen from the fact that given any plaintext and ciphertext, there is a key which maps the selected plaintext to the selected ciphertext. So given a ciphertext, we get no information whatsoever on what key or plaintext could have been used.
- How do we obtain “random” bit-strings for shared secret keys as long as the messages, and never re-use them?
- Again system is **not practical**.
Transposition

- Harder to break than substitution ciphers
- Still susceptible to frequency analysis

Product Ciphers

- Substitution and transposition ciphers are not secure due to language characteristics
- What about using two or more of these ciphers in a serial fashion
 - Two or more substitutions
 - Two or more Transpositions
 - A few substitutions and a few transposition
 - Transition from classical to modern ciphers
Some Questions

- Enigma is an example of how design?
- Encryption can provide confidentiality, but not integrity: true or false?
- World’s best cipher is what?
- I give you a ciphertext, and ask you to give me the corresponding plaintext – what attack is this? How does it compare to the known plaintext attack?
- All classical ciphers are based on either or why are they all broken?
- What’s the problem in choosing a long long key? It should give you a lot of security, no?

Some Questions

- An encryption scheme is said to be deterministic if encrypting the same plaintext twice yields the same ciphertext. (otherwise it is said to be randomized).
 – Is a deterministic scheme a good scheme in terms of security?
Further Reading

- Stallings (edition 5) – Chapter 2.1 to 2.3
- HAC – Chapter 1 and 7

Today’s fun/informative bit – The Smudge Attack

- See: http://www.usenix.org/event/woot10.tech/full_papers/Aviv.pdf
Block Ciphers and Stream Ciphers

- Block ciphers partition plaintext into blocks and encrypt each block independently (with the same key) to produce ciphertext blocks.
- A stream cipher generates a *keystream* and encrypts by combining the keystream with the plaintext, usually with the bitwise XOR operation.
- We will focus mostly on Block Ciphers

DES – Data Encryption Standard

- Encrypts by series of substitution and transpositions.
- Based on *Feistel Structure*
- Worldwide standard for more than 20 years.
- Designed by IBM (Lucifer) with later help from NSA.
- No longer considered secure for highly sensitive applications.
- Replacement standard AES (advanced encryption standard) recently completed.
DES – Overview (Block Operation)

DES – Each Round
DES – Function F

DES – Key Schedule (KS)
Operation Tables of DES: Key Schedule, PC-1, PC-2

<table>
<thead>
<tr>
<th>Location (n)</th>
<th>No. of shifts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

Key permutation PC-1

<table>
<thead>
<tr>
<th>Key</th>
<th>17</th>
<th>11</th>
<th>23</th>
<th>22</th>
<th>17</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56</td>
<td>30</td>
<td>42</td>
<td>34</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>24</td>
<td>41</td>
<td>43</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>54</td>
<td>36</td>
<td>52</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>46</td>
<td>58</td>
<td>24</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>63</td>
<td>58</td>
<td>30</td>
<td>52</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>52</td>
<td>36</td>
<td>24</td>
<td>30</td>
<td>14</td>
</tr>
</tbody>
</table>

Key permutation PC-2

<table>
<thead>
<tr>
<th>Key</th>
<th>17</th>
<th>11</th>
<th>23</th>
<th>22</th>
<th>17</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59</td>
<td>24</td>
<td>41</td>
<td>43</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>30</td>
<td>42</td>
<td>34</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>54</td>
<td>36</td>
<td>52</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>46</td>
<td>58</td>
<td>24</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>63</td>
<td>58</td>
<td>30</td>
<td>52</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>52</td>
<td>36</td>
<td>24</td>
<td>30</td>
<td>14</td>
</tr>
</tbody>
</table>

Operation Tables (IP, IP⁻¹, E and P)

Initial Permutation (IP)

38	55	42	31	48	57	2
46	52	34	32	18	16	28
47	51	37	33	17	27	29
34	50	43	30	49	56	19
40	59	41	39	45	54	21
58	66	55	44	33	22	10

Bit-Selection Table E

37	1	5	2	3	4	3
4	3	6	7	8	9	
8	9	10	11	12	13	
12	13	14	15	16	17	
24	25	26	27	28	29	
30	31	32	33	34	35	

Inverse Initial Permutation (IP⁻¹)

38	1	16	6	26	18	57	42
46	17	11	14	27	30	28	55
47	15	10	13	29	25	31	32
34	50	43	30	49	56	19	
40	59	41	39	45	54	21	
58	66	55	44	33	22	10	

Permutation P

9	7	30	21
19	12	8	17
15	33	24	
5	18	31	10
2	9	14	18
17	37	7	5
19	13	30	9
55	58	8	54
S-boxes: S1 (as an example)

<table>
<thead>
<tr>
<th></th>
<th>0000</th>
<th>0001</th>
<th>0010</th>
<th>0011</th>
<th>0100</th>
<th>0101</th>
<th>0110</th>
<th>0111</th>
<th>1000</th>
<th>1001</th>
<th>1010</th>
<th>1011</th>
<th>1100</th>
<th>1101</th>
<th>1110</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>14</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>15</td>
<td>7</td>
<td>4</td>
<td>14</td>
<td>2</td>
<td>13</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>1</td>
<td>14</td>
<td>8</td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td>15</td>
<td>12</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>14</td>
<td>10</td>
<td>0</td>
<td>6</td>
<td>13</td>
</tr>
</tbody>
</table>

Is the table entry from

$$S(b_1b_2b_3b_4b_5b_6) \quad \text{row: } b_1b_2 \quad \text{column: } b_3b_4b_5b_6$$

$$S(011001) = 6_d = 0110$$

DES Decryption

- Same as the encryption algorithm with the “reversed” key schedule – NEXT!
Plain text

Initial permutation (IP)

Round-1 (key K_1)

Rounds 2-15

Round-16 (key K_{16})

swap

IP inverse

Cipher text

Since $b \oplus b = 0$

$\begin{align*}
R_{15} & \quad L_{15} \\
L_{15} \oplus F(R_{15}, K_{16}) & \quad R_{15} \\
& \quad L_{15} \oplus F(R_{15}, K_{16}) \oplus F(R_{15}, K_{16}) \\
& \quad R_{15} \\
& \quad L_{15} \\
& \quad R_{15}
\end{align*}$
DES Example

We choose a random plaintext block and a random key, and determine what the ciphertext block would be (all in hexadecimal):

Plaintext: 123456ABCD132536
CipherText: C0B7A8D05F3A829C
Key: AABB09182736CCDD

<table>
<thead>
<tr>
<th>Round</th>
<th>Left</th>
<th>Right</th>
<th>Round Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round 1</td>
<td>18CA18AD</td>
<td>5A78E394</td>
<td>194CD072DE8C</td>
</tr>
<tr>
<td>Round 2</td>
<td>5A78E394</td>
<td>4A1210F6</td>
<td>4568581ABCCD</td>
</tr>
<tr>
<td>Round 3</td>
<td>4A1210F6</td>
<td>B8089591</td>
<td>06ED4A5CF5B5</td>
</tr>
<tr>
<td>Round 4</td>
<td>B8089591</td>
<td>236779C2</td>
<td>DA2D032BEE3</td>
</tr>
</tbody>
</table>

Example (contd) -- encryption

Round 5	236779C2	A15A4B87	59A629FEC913
Round 6	A15A4B87	2E8F9C65	C194B87475E
Round 7	2E8F9C65	A9FC20A3	708AD2DDB3C0
Round 8	A9FC20A3	308BEE97	34F822F0C66D
Round 9	308BEE97	10AF9D37	34B4473DCCC
Round 10	10AF9D37	6C6A5CB0	32765708B5BF
Round 11	6C6A5CB0	FF3C405F	5D5560AF7CA5
Round 12	FF3C405F	22A5963B	C2C1E36A4BF3
Round 13	22A5963B	387CCDA4	9C31397C91F
Round 14	387CCDA4	BD2D02AB	251B58BC717D0
Round 15	BD2D02AB	CF26B472	3330C59A36D
Round 16	19BA9212	CF26B472	181C5D75C66D

After combination: 19BA9212CF26B472
CipherText: C0B7A8D05F3A829C
(after final permutation)
Example (contd) -- decryption

Let us see how Bob, at the destination, can decipher the ciphertext received from Alice using the same key. Table 6.16 shows some interesting points.

<table>
<thead>
<tr>
<th>Ciphertext: C0B7A8D05F3A829C</th>
</tr>
</thead>
<tbody>
<tr>
<td>After initial permutation: 19BA9212CF26B472</td>
</tr>
<tr>
<td>After splitting: L0=19BA9212 R0=CF26B472</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Round</th>
<th>Left</th>
<th>Right</th>
<th>Round Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round 1</td>
<td>CF26B472</td>
<td>BD2DD2AB</td>
<td>181C5D75C66D</td>
</tr>
<tr>
<td>Round 2</td>
<td>BD2DD2AB</td>
<td>387CCDAA</td>
<td>3330C5D9A36D</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Round 15</td>
<td>5A78E394</td>
<td>18CA18AD</td>
<td>4568581ABCCE</td>
</tr>
<tr>
<td>Round 16</td>
<td>14A7D678</td>
<td>18CA18AD</td>
<td>194CD072DE8C</td>
</tr>
</tbody>
</table>

After combination: 14A7D67818CA18AD
Plaintext: 123456ABCD132536 (after final permutation)

DES Security: Avalanche Effect

Plaintext: 0000000000000000
Ciphertext: 4789FD476E82A5F1
Key: 22234512987ABB23

Plaintext: 0000000000000001
Ciphertext: 0A4ED5C15A63FEA3
Key: 22234512987ABB23

Although the two plaintext blocks differ only in the rightmost bit, the ciphertext blocks differ in 29 bits. This means that changing approximately 1.5 percent of the plaintext creates a change of approximately 45 percent in the ciphertext.
Further Reading

- Chapter 7.4 of HAC
- Chapter 3 of Stallings

DES Security

- S-Box design not well understood
- Has survived some recent sophisticated attacks (differential cryptanalysis)
- Key is too short. Hence is vulnerable to brute force attack.
- 1998 distributed attack took 3 months.
- $1,000,000 machine will crack DES in 35 minutes – 1997 estimate. $10,000 – 2.5 days.
Super-encryption.

- If key length is a concern, then instead of encrypting once, encrypt twice!!

 \[C = E_{K2}(E_{K1}(P)) \]

 \[P = D_{K1}(D_{K2}(C)) \]

- Does this result in a larger key space?
- Encrypting with multiple keys is known as super-encryption.
- May not always be a good idea
Double DES

- Double DES is almost as easy to break as single DES (Needs more memory though)!

\[
\begin{align*}
P & \xrightarrow{K_1} E \xrightarrow{X} E \xrightarrow{K_2} C \\
C & \xrightarrow{K_2} D \xrightarrow{X} D \xrightarrow{K_1} P
\end{align*}
\]

Double DES – Meet-in-the-middle Attack (due to Diffie-Hellman)

- Based on the observation that, if
 \[C = E_{K_2}(E_{K_1}(P)) \]
 Then
 \[X = E_{K_1}(P) = D_{K_2}(C). \]
- Given a known (P, C) pair, encrypt P with all possible values of K and store result in table T.
- Next, decrypt C with all possible keys K and check result. If match occurs then check key pair with new known (P, C) pair. If match occurs, you have found the keys. Else continue as before.
- Process will terminate successfully.
Meet-in-the-middle Explanation

- The first match does not say anything as we have 2^{64} ciphertexts and 2^{112} keys.
- On the average $2^{112} / 2^{64} = 2^{48}$ keys will produce same ciphertext.
- So there could be 2^{48} possible candidates.
- We can use a second pair (P', C').
- So, probability that false alarm will survive two known (P, C) pairs is $2^{48} / 2^{64} = 2^{-16}$.
- One can always check a third pair to further reduce the chance of a false alarm.

Triple DES

- Triple DES (2 keys) requires 2^{112} search. Is reasonably secure.
- Triple DES (3 keys) requires 2^{112} as well.
- Which one is better?
Block Cipher Encryption modes

- Electronic Code Book (ECB)
- Cipher Block Chain (CBC)
 - Most popular one
- Others (we will not cover)
 - Cipher Feed Back (CFB)
 - Output Feed Back (OFB)

Analysis

We will analyze each of these modes in terms of:
- Security
- Computational Efficiency (parallelizing encryption/decryption)
- Transmission Errors
Electronic Code Book (ECB) Mode

- Although DES encrypts 64 bits (a block) at a time, it can encrypt a long message (file) in Electronic Code Book (ECB) mode.

- Deterministic -- If same key is used then identical plaintext blocks map to identical ciphertext

Example – why ECB is bad?

Tux

Tux encrypted with AES in ECB mode
Cipher Block Chain (CBC) Mode

CBC Traits

- Randomized encryption
- IV – Initialization vector serves as the randomness for first block computation; the ciphertext of the previous block serves as the randomness for the current block computation
- IV is a random value
- IV is **no secret**; it is sent along with the ciphertext blocks (it is part of the ciphertext)
Example – why CBC is good?

CBC – More Properties

• What happens if k-th cipher block C_k gets corrupted in transmission.
 – With ECB – Only decrypted P_k is affected.
 – With CBC?
 • Only blocks P_k and P_{k+1} are affected!!
• What if one plaintext block P_k is changed?
 – With ECB only C_k affected.
 – With CBC all subsequent ciphertext blocks will be affected.
 • “Avalanche effect”
 – This leads to an effective integrity protection mechanism (or message authentication code (MAC))
Some Questions

• Double encryption in DES increases the key space size from 2^{56} to 2^{112} – true or false?
• Is known-plaintext an active or a passive attack?
• Is chosen-ciphertext attack an active or a passive attack?
• Reverse Engineering is applied to what design of systems – open or closed?

Some Questions

• $C=\text{DES}(K,P)$; where $(P, C$ are 64-bit long blocks). What would be $\text{DES}(K,"PPPP")$ in ECB mode? What it would be in CBC mode?
• ECB is secure for sending just one block of data: true or false?
• Is it okay to re-use IV in CBC? Why/why not?
• Alice needs to send a *long* top-secret message to Bob. Which of the ciphers that we studied today can she use?