Lecture 8: Privacy and Anonymity
Using Anonymizing Networks

CS 336/536: Computer Network Security
Fall 2015

Nitesh Saxena

Some slides borrowed from Philippe Golle, Markus Jacobson

Course Admin

• HW/Lab 3 posted
 – Covers Lecture 7 (SSL/TLS)
 – Due Nov 16
• Labs active this Friday
• Questions?
A Case History: AOL Web Search Query Log Leakage

• **AOL's disturbing glimpse into users' lives**, CNET News, August 7, 2006
 – 21 million search queries posed over a 3-month long period; 650,000 users
 – No user identification information released per se, **but??**
• Search Log still available:

Other Scenarios where privacy is important

• Location-based search
• Web browsing
• Electronic voting
• Electronic payments
• Email conversation
• ...
Today’s Outline

- Anonymizing Network (or Mix Network)
- Anonymizing Network Applications
- Requirements
- Robustness
- Types of Anonymizing Networks
 - Decryption based (Onion Routing)
 - Re-encryption based

Definition: Mix Server (or Relay)

- A mix server:
 - Receives inputs
 - Produces “related” outputs
 - The relationship between inputs and outputs is secret
Definition: Mix Network

- **Mix network**
 A group of mix servers that operate sequentially.

```
Server 1  Server 2  Server 3
```

Inputs Outputs

Applications

- **Hide:**
 - “who voted for whom?”
 - “who paid whom?”
 - “who communicated with whom?”
 - “what is the source of a message?”

- Good for protecting privacy for
 - election and communication

- Used as a privacy building block
Electronic Voting Demonstration

1. “Who do you like best?”
 - Washington
 - Lincoln
 - Roosevelt

2. Put your ballot into a WHITE envelope and put again in a RED one and sign on it

 Jerry

Electronic Voting Demo. (Cont’d)

Administrators will

1. Verify signatures together
2. 1st Admin. shuffles and opens RED envelopes
3. Send them to 2nd Admin.
4. 2nd Admin. shuffles again and opens WHITE envelopes
5. Count ballots together
A real system for elections

\[\text{Sign}_{\text{voter } 1} (\text{encr}(\text{encr} (\text{vote}_1))) \]
\[\text{Sign}_{\text{voter } 2} (\text{encr}(\text{encr} (\text{vote}_2))) \]
\[\vdots \]
\[\text{Sign}_{\text{voter } n} (\text{encr}(\text{encr} (\text{vote}_n))) \]

Mix Net \rightarrow \{ \text{vote}_1, \text{vote}_2, \text{vote}_3, \ldots, \text{vote}_n \}

Electronic Payment Demo.

- “Choose one person you like to pay $5”

\[\text{Name of the person} \ (\underline{\text{__________}}) \]

- Put your ballot into an **WHITE** envelope and put again in a **RED** one and sign on it
Electronic Payment Demo. (Cont’d)

Administrators will
1. Verify signatures together
2. Deduct $5 from each account
3. 1st Admin. shuffles and opens **RED** envelopes
4. Send them to 2nd Admin.
5. 2nd Admin. shuffles again and opens **WHITE** envelopes
6. Credit $5 to recipients

For Payments

Sign_{payer_1} (encr(encr (payee_1))))
Sign_{payer_2} (encr(encr (payee_2))))
 .
 .
 .
Sign_{payer_n} (encr(encr (payee_n))))

D E D U C T

Mix Net

{payee_1}
{payee_2}
 .
 .
 {payee_n}

Credit

11/10/2015
Lecture 8: Privacy
For email communication

\[\text{encr (email}_1, \text{addressee}_1) \rightarrow \text{Mix Net} \rightarrow \ldots \rightarrow \text{Deliver}\]

\[\text{encr (email}_2, \text{addressee}_2) \rightarrow \ldots \rightarrow \ldots \rightarrow \text{Deliver}\]

\[\text{encr (email}_n, \text{addressee}_n) \rightarrow \ldots \rightarrow \ldots \rightarrow \text{Deliver}\]

To: Jerry
Don't forget to have lunch.

Other Uses

- Anonymous web browsing; web searching (Anonymizer)
Other Uses (Cont’d)

- Location privacy for cellular devices
 - Location-based service is GOOD!
 - Landline-phone calling to 911 in the US, 112 in Europe
 - All cellular carrier since December 2005
 - RISK!
 - Location-based spam
 - Harm to a reputation

Other Uses

- Anonymous VoIP calls
- Anonymous acquisition of security patches
Other uses (Cont’d)

Sometimes abuses

- Avoid legislation (e.g., piracy)
- P2P sharing of copyright content
- Terrorism: communication with media
 – 2008 Mumbai attacks

Requirements:
Privacy
Efficiency
Trust
Robustness
Requirements

1. Privacy
 Nobody knows who said what

2. Efficiency
 Mixing is efficient (= practically useful)

3. Trust
 How many entities do we have to trust?

4. Robustness
 Will replacement cheaters be caught? What if a certain number of mix servers fail?

But what about robustness?

I ignore his output
and produce my own

encr(Obama) → Hillary
encr(Obama) → Hillary
encr(Hillary) → Hillary

There is no robustness!
Zoology of Mix Networks

- **Decryption Mix Nets** [Cha81,…]:
 - Inputs: ciphertexts
 - Outputs: *decryption* of the inputs.

- **Re-encryption Mix Nets** [PIK93,…]:
 - Inputs: ciphertexts
 - Outputs: *re-encryption* of the inputs

First Solution

Chaum ’81, implemented by Syverson, Goldschlag

- Not robust
 - (or: tolerates 0 cheaters for correctness)

- Requires every server to participate
 - (and in the “right” order!)
Re-encryption Mixnet

0. Setup: mix servers generate a shared key

1. Users encrypt their inputs:

2. Encrypted inputs are mixed:

3. A quorum of mix servers decrypts the outputs

Recall: Discrete Logarithm Assumption

- \(p, q \) primes such that \(q \mid p-1 \)
- \(g \) is an element of order \(q \) and generates a group \(G_q \) of order \(q \)
- \(x \in \mathbb{Z}_q, y = g^x \mod p \)
- Given \((p, q, g, y)\), it is computationally hard to compute \(x \)
 - No polynomial time algorithm known
 - \(p \) should be 1024-bits and \(q \) be 160-bits
- \(x \) becomes the private key and \(y \) becomes the public key
ElGamal Encryption

- Encryption (of m in G_q):
 - Choose random r in Z_q
 - k = g^r mod p
 - c = my^r mod p
 - Output (k,c)

- Decryption of (k,c)
 - M = c * k^{-x} mod p

- Secure under discrete logarithm assumption

ElGamal Example: dummy

- Let’s construct an example

 KeyGen:
 - p = 11, q = 2 or 5; let’s say q = 5
 - 2 is a generator of Z_{11}^*
 - g = 2^2 = 4
 - x = 2; y = 4^2 mod 11 = 5

- Enc(3):
 - r = 4 \Rightarrow k = 4^4 mod 11 = 3
 - c = 3*5^4 mod 11 = 5

- Dec(3,5):
 - m = 5*3^{-2} mod 11 = 3
(t+1, n)- Secret Sharing

- Motivation: to secure the cryptosystem against $t \leq n/2$ corruptions
- Tool: Secret Sharing (Shamir’s Polynomial Secret Sharing)
 - any set of $t+1$ or more entities can recover the secret
 - an adversary who corrupts at most t entities, learns nothing about the secret

Tool: Shamir’s Polynomial Secret Sharing

- $f(z) \rightarrow$ degree t polynomial (mod q)
- $f(0) \rightarrow x$
- $f(i) \rightarrow ss[i]$

INSECURE

SECURE

Polynomial interpolation:

For any G, s.t. $|G| = t+1$

\[x = \sum_{i \in G} ss[i] (\mod q) \]

(n=7, t=3)

Re-encryption technique

Input: a ciphertext (k, c) wrt public key y

1. Pick a number r' randomly from $[0...q-1]$
2. Compute
 \[k' = kg^{r'} \mod p \]
 \[c' = cy^{r'} \mod p \]
3. Output (k', c')

Same decryption technique!

Compute $m \leftarrow k' c^{t-x}$
A simple Mix

\[(k_1, c_1) \rightarrow (k'_1, c'_1) \rightarrow (k''_1, c''_1)\]
\[(k_2, c_2) \rightarrow (k'_2, c'_2) \rightarrow (k''_2, c''_2)\]
\[\ldots\]
\[(k_n, c_n) \rightarrow (k'_n, c'_n) \rightarrow (k''_n, c''_n)\]

Note: different cipher text, different re-encryption exponents!

And to get privacy... permute, too!

\[(k_1, c_1) \rightarrow \{\} \rightarrow \{\} \rightarrow (k''_1, c''_1)\]
\[(k_2, c_2) \rightarrow \{\} \rightarrow \{\} \rightarrow (k''_2, c''_2)\]
\[\ldots\]
\[(k_n, c_n) \rightarrow \{\} \rightarrow \{\} \rightarrow (k''_n, c''_n)\]
And, finally...the Proof

- Mix servers must prove correct re-encryption
 - Given \(n \) El Gamal ciphertexts \(E(m_i) \) as input
 - and \(n \) El Gamal ciphertexts \(E(m'_i) \) as output
 - Compute: \(E(\Pi m_i) \) and \(E(\Pi=m'_i) \)
 - Ask Mix for Zero-Knowledge proof that these ciphertexts decrypt to same plaintexts

Anonymizing Network in practice: Tor

- A low-latency anonymizing network
 http://www.torproject.org/
- Currently 1000 or so routers distributed all over the internet
- Peer-based: a client can choose to be a router
- A request is routed to/fro a series of a circuit of three routers
- A new circuit is chosen every 10 minutes
- *No real-world implementation of re-encryption mix as yet*