SPECIAL ISSUE ON INFORMATION THEORETIC SECURITY

H. Imai, G. Hanaoka, U. Maurer, and Y. Zheng

Introduction to the Special Issue on Information Theoretic Security 2405

PAPERS

Bounds for Unconditionally Secure Authentication Codes

M. Naor, G. Segev, and A. Smith

Tight Bounds for Unconditional Authentication Protocols in the Manual Channel and Shared Key Models 2408

R. Safavi-Naini and P. R. Wild

Information Theoretic Bounds on Authentication Systems in Query Model 2426

Broadcast Channels

I. Csiszár and P. Narayan

Secrecy Capacities for Multiterminal Channel Models 2437

A. Khisti, A. Tchamkerten, and G. W. Wornell

Secure Broadcasting Over Fading Channels 2453

Y. Liang, H. V. Poor, and S. Shamai (Shitz)

Secure Communication Over Fading Channels 2470

R. Liu, I. Marić, P. Spasojević, and R. D. Yates

Discrete Memoryless Interference and Broadcast Channels With Confidential Messages: Secrecy Rate Regions 2493

D. R. Stinson and G. M. Zaverucha

Some Improved Bounds for Secure Frameproof Codes and Related Separating Hash Families 2508

Secure Key Agreement

M. Bloch, J. Barros, M. R. D. Rodrigues, and S. W. McLaughlin

Wireless Information-Theoretic Security 2515

V. Yakovlev, V. Korzhik, and G. Morales-Luna

Key Distribution Protocols Based on Noisy Channels in Presence of an Active Adversary: Conventional and New Versions With Parameter Optimization 2535

Secure Multiport Computation

O. Kosut and L. Tong

Distributed Source Coding in the Presence of Byzantine Sensors 2550

K. Kurosawa, W. Kishimoto, and T. Koshiba

A Combinatorial Approach to Deriving LowerBounds for Perfectly Secure ObliviousTransfer Reductions 2566
Introduction to the Special Issue on Information Theoretic Security

This special issue of the IEEE Transactions on Information Theory is devoted to the exciting research field of Information Theoretic Security. Cryptographic systems that are currently employed in practice are predominantly based on unproven mathematical assumptions such as the assumed infeasibility of factoring large integers and finding discrete logarithms over large finite fields. Advances in cryptoanalytic attack algorithms and new computing technologies such as quantum computers may eventually render these systems insecure and, thus, obsolete in the future. As such, among both information security researchers and practitioners there has long been a sense of urgency to investigate novel encryption and authentication systems that do not rely on unproven mathematical assumptions for their security. The past two decades have witnessed a number of significant developments in information theoretic security, including the discovery of unconditionally secure encryption schemes, authentication codes and signature methods, and the development of quantum key distribution protocols.

Research papers that have been selected for inclusion in this special issue cover a broad range of important topics in information theoretic security, including

- authentication,
- broadcast security,
- channel capacity,
- key agreement,
- two and multiparty computation,
- network coding,
- quantum cryptography,
- secret sharing,
- steganography,
- wire-tap channels,
- complexity of non-number-theoretic problems, and
- anonymity.

Two papers address bounds for unconditionally secure authentication codes. In addition to the more traditional model for authentication, where a sender and a receiver share a short secret key, the paper by Naor, Segev, and Smith examines also a model where the sender and the receiver are connected by a low-bandwidth auxiliary channel that allows the sender to “manually” authenticate a short message to the receiver. The paper by Safavi-Naini and Wild considers a strong attack scenario where an adversary is adaptive and has access to authentication and verification oracles.

Five papers investigate security issues related to broadcast channels. Csizsár and Narayan find new bounds for secrecy capacities of channels with one input terminal, multiple-output terminals, and a public noiseless channel of unlimited capacity. Khisti, Tchamkerten, and Wornell study parallel broadcast channels with one sender, multiple intended receivers, and one eavesdropper. This is followed by Liang, Poor, and Shamai who investigate fading broadcast channels with confidential messages. Liu, Marić, Spasojević, and Yates study secrecy capacity regions for discrete memoryless interference and broadcast channels with independent confidential messages. Finally, Stinson and Zaverucha investigate new bounds for secure frameproof codes that find applications in secure broadcasting.

Two papers fall into the area of secure key agreement. Continuing their earlier work on confidential communication over wireless channels, Bloch, Barros, Rodrigues, and McLaughlin develop practical secret key agreement protocols over Gaussian and quasi-static fading wiretap channels. Yakovlev, Korzhik, and Morales-Luna present new ideas for key distribution protocols over noisy wiretap channels that offer information theoretic security in the presence of an active adversary.

Four papers are concerned with secure multiparty computation. Kousut and Tong investigate a problem in distributed source coding where an unknown number of sensors can be controlled by a malicious intruder. Their work is followed by two papers, one by Kurosawa, Kishimoto, and Koshiba and the other by Nascimento and Winter, both of which investigate information theoretically secure oblivious transfer protocols. Wang and Desmedt study message transmission in a reliable and privacy-preserving manner over a network that can be modeled by a directed graph.

Network coding is an emerging area of importance. The paper by Jaggi, Langberg, Katti, Ho, Katabi, Medard, and Effros addresses security issues with network coding. Specifically, the authors design polynomial-time, rate-optimal network codes that work in the presence of Byzantine nodes.

Two papers are directly related to quantum cryptography. The paper by Horodecki, Horodecki, Horodecki, Leung, and Oppenheim provides proofs for the unconditional security of a quantum key distribution protocol that is based on distilling pbits, whereas the other paper by Horodecki, Pankowski, Horodecki, and Horodecki investigates bound entangled states that have a positive distillable secure key rate.

Three papers are devoted to steganography. Anthapadmanabhan, Barg, and Dumer show how to achieve the maximum attainable rate of fingerprinting codes under the marking assumption. Shikata and Matsumoto propose models for unconditionally secure stegosystems against active attacks over an insecure channel. Wang and Moulin show bounds and constructions for perfectly secure steganography.
Two papers address the classical wiretap channels. Merhav considers a wiretap channel where a wiretapper is allowed to have access to both coded information and side information via channels that are more noisy than the respective channels of between a sender and a legitimate decoder. Tekin and Yener investigate the General Gaussian Multiple Access Wire-Tap Channel (GGMAC-WT) and the Gaussian Two-Way Wire-Tap Channel (GTW-WT) which are common in multiuser wireless communications.

The paper by Kiayias and Yung study the hardness of the Reed–Solomon codes when applied in cryptography. This is followed by a paper by Venkitasubramaniam, He, and Tong where anonymous communication in a wireless environment is investigated.

We have six correspondences addressing different aspects of information theoretic security. Nascimento, Barros, Skludarek, and Imai show that the commitment capacity of the Gaussian channel is infinite. Dziembowski and Maurer prove a tight lower bound on storage for key agreement in the bounded-storage model. Wolf and Wullschleger introduce various monotones and use them to derive lower bounds in multiparty computations. Ho, Leong, Koetter, Medard, and Effros propose an information theoretic approach for detecting Byzantine modifications in networks employing random linear network coding. Zhao, Gui, Chen, Han, and Guo study the hardness of key distillation for reverse reconciliation continuous variable quantum key distribution. Finally, Hayashi and Yamamoto show new coding theorems for the Shannon cipher.

ACKNOWLEDGMENT

We would like to thank all the authors, including those whose papers were not selected for publication in this special issue, for their contributions to the research field. During the prolonged period of reviewing, we sought help from numerous expert reviewers for their scientific opinions on submissions to the special issues. Without their assistance it would not have been possible to select the final list of papers for publication from the large number of high-quality submissions. We would also like to thank H. Vincent Poor, the past Editor-in-Chief for IEEE TRANSACTIONS ON INFORMATION THEORY, and Ezio Biglieri, the current Editor-in-Chief for their support for this special issue. Thanks also go to Yukiko Ito for her tireless assistance during the editing process.

HIDEKI IMAI, Guest Editor-in-Chief
Faculty of Science and Engineering
Chuo University
Kasuga, Bunkyo-ku,
Tokyo, 112-8551 Japan
Research Center for Information Security (RCIS)
National Institute of Advanced Industrial Science and Technology (AIST)
Sotokanda, Chiyoda-ku,
Tokyo, 101-0021 Japan

GOICHIRO HANAOKA, Guest Editor
RCIS, AIST
Sotokanda, Chiyoda-ku,
Tokyo, 101-0021 Japan

UELI MAurer, Guest Editor
Department of Computer Science
ETH Zurich
CH-8092 Zurich, Switzerland

YULIANG ZHENG, Guest Editor
Department of Software and Information Systems
University of North Carolina
Charlotte, NC 28223 USA

Hideki Imai (M’74–SM’88–F’92) received the B.E., M.E., and Ph.D. degrees in electrical engineering from the University of Tokyo in 1966, 1968, and 1971, respectively.

From 1971 to 1992, he was on the faculty of Yokohama National University, Yokohama, Japan. From 1992 to 2006, he was a Professor in the Institute of Industrial Science, the University of Tokyo. In 2006, he was appointed as an Emeritus Professor of the University of Tokyo and a Professor of Chuo University. Concurrently, he serves as the Director of Research Center for Information Security, National Institute of Advanced Industrial Science and Technology. His current research interests include information theory, coding theory, cryptography, and information security.

From IEICE (the Institute of Electronics, Information and Communication Engineers), Dr. Imai received Best Book Awards in 1976 and 1991, Best Paper Awards in 1992, 2003, and 2004, the Yonezawa Memorial Paper Award in 1992, the Achievement Award in 1995, the Inose Award in 2003, and the Distinguished Achievement and Contributions Award in 2004. He also received a Golden Jubilee Paper Award from the IEEE Information Theory Society in 1998, and Official Commendations from the Minister of Internal Affairs and Communications in June 2002 and from the Minister of Economy, Trade and Industry in October 2002. He was awarded Honor Doctor degree by Sookchunhyang University, Korea, in 1999 and Docteur Honoris Causa degree by the University of Toulon Var, France, in 2002. He is also the recipient of the Ericsson Telecommunications Award in 2005. He was awarded Wilkes Award from the British Computer Society in 2007. He is a member of the Science Council of Japan. He was elected a Fellow of IEEE, IEICE, and IACR (International Association for Cryptologic Research) in 1992, 2001, and 2007, respectively. He has chaired many committees of scientific societies and organized a number of international conferences. He served as the President of the Society of Information Theory and its Applications in 1997, of the IEICE Engineering Sciences Society in 1998, and of the IEEE Information Theory Society in 2004. He is currently the Chair of CRYPTREC (Cryptography Techniques Research and Evaluation Committee of Japan).
Goichiro Hanaoka received the bachelor’s degree in electronic engineering from the University of Tokyo, Tokyo, Japan, in 1997 and the masters and Ph.D. degrees in information and communication engineering from the University of Tokyo in 1999 and 2002, respectively.

From 2002 to 2005, he was a Research Fellow of the Japan Society for the Promotion of Science (JSPS). Since 2005, he has been with the National Institute of Advanced Industrial Science and Technology, Japan. He has coauthored more than 60 international conference and journal papers.

Dr. Hanaoka served as a member of program committee for many international conferences, such as ICISC’07, Pairing’07, SPRE-WWW’07, CT-RSA’07, Inscrypt’07, I CISC’06, ACISP’06, ICISC’05, ANCS’05, ICICS’04, ACISP’04, ACNS’04, PKC’04, CT-RSA’04. He received the Wilkes Award from the British Computer Society in 2007, the Best Paper Award of SCIS from IEICE in 2006, the TELECOM System Technology Award in 2004, the 20th Anniversary Prize of ISEC SCIS in 2003, and the Best Paper Award from SITA in 2000.

Ueli Maurer (S’85–M’90–SM’94–F’03) was born in St. Gallen, Switzerland, in 1960. He graduated in electrical engineering (1985) and received the Ph.D. degree in technical sciences (1990), both from the Swiss Federal Institute of Technology Zurich (ETH), Switzerland.

From 1990 to 1991, he was a DIMACS Research Fellow in the Department of Computer Science at Princeton University, Princeton, NJ, and in 1992, he joined the Computer Science Department at ETH Zurich. There he is a Professor of Computer Science and Head of the Information Security and Cryptography Research Group. His research interests include information security, the theory and applications of cryptography, information theory, theoretical computer science, and discrete mathematics. He holds several patents for cryptographic systems and has served as a consultant for many companies and government organizations. He serves on a few management and scientific advisory boards and is cofounder of Visonys, a Zurich-based security software company.

Prof. Maurer has served extensively as an Editor, including as Associate Editor of the IEEE TRANSACTIONS ON INFORMATION THEORY, and as a member of program committees. Currently he is the Editor-in-Chief of the Journal of Cryptology, Editor-in-Chief of Springer Verlag’s book series in Information Security and Cryptography, and serves on the Board of Directors of the International Association for Cryptologic Research (IACR).

Yuliang Zheng (S’87–M’91–SM’98) received the B.Sc. degree in computer science from Nanjing Institute of Technology, Nanjing, China, in 1982 and the M.E. and Ph.D. degrees, both in electrical and computer engineering, from Yokohama National University, Yokohama, Japan, in 1988 and 1991 respectively.

From 1982 to 1984, he was with the Guangzhou Institute for Communication Research, Guangzhou (Canton), China. From 1991 to 2001, he was on the faculty of Australian Defence Force Academy, University of Wollongong and Monash University, all in Australia. Currently he is a Full Professor of Information Technology, and serves as the founding Director of the Information Security and Assurance Center, University of North Carolina, Charlotte. He is the designer of HAVAL, the first one-way hash algorithm family that provides the flexibility for users to choose appropriate member algorithms for specific applications. He is widely known as the inventor of the signcryption public key cryptographic algorithm. His research interests include cryptography, network security, and their applications in real world systems. He has consulted widely for industries and government agencies at all levels on cyber security and privacy issues, is the cofounder of Calyptix Security Corporation.

Dr. Zheng is a member of IACR and ACM. He has chaired a number of international conferences and is a cofounder of the PKC international conference series dedicated to the practice and theory in public key cryptography. Currently, he serves as an Associate Editor of The Computer Journal published by the Oxford University Press and the British Computer Society.
IEEE INFORMATION THEORY SOCIETY

The Information Theory Society is an organization, within the framework of the IEEE, of members with principal professional interests in information theory. All members of the IEEE are eligible for membership in the Society and will receive this TRANSACTIONS upon payment of the annual Society membership fee of $30.00. For information on joining, write to the IEEE at the address below. Member copies of Transactions/Journals are for personal use only.

BOARD OF GOVERNORS

President
G. David Forney, Jr.
MIT
Cambridge, MA 02139, USA

Secretary
João Barros
Univ. de Porto
4150-180 Porto, Portugal

Treasurer
Anant Sahai
Univ. of California, Berkeley
Berkeley, CA 94720-1770 USA

Transactions Editor
Ezio Biglieri
Dept. TIC
Universitat Pompeu Fabra
Univ. Illinois at Chicago
Chicago, IL 60607-7053 USA

First Vice President
Andréa Goldsmith
A. Robert Calderbank (’08)

Second Vice President
G. David Forney, Jr. (’09)

Junior Past President
Frank Kschischang

Past Presidents
Ryuji Kohno (’09)

Transactions on INFORMATION THEORY

Ezio Biglieri, Editor-in-Chief
Adriana J. Van Wingen, Publications Editor

IEEE Transactions on Information Theory

John B. Anderson
Book Reviews

E.E. Botto
Communications

Randy Berry
Communication Networks

Helmut Bölcskei
Detection and Estimation

A. Canteaut
Complexity and Cryptography

Ilya Dumer
Coding Theory

Tvui Etzion
Coding Theory

Toru Fujihara
Complexity and Cryptography

Andrea Goldsmith
Communications

Guang Gong
Sequences

Alex Grant
Communications

Ioannis Kontoyiannis
Shannon Theory

Gérard Kramer
Shannon Theory

Adam Krzyżak
Pattern Recognition, Statistical Learning, and Inference

Hans-Andrea Leliger
Coding Techniques

Urbashi Mitra
At Large

Eytan Modiano
Communication Networks

Aria Nosratinia
Communication Networks

Erik Ordentlich
Source Coding

Sundar Rajan
Coding Theory

Justin Romberg
Signal Processing

Igal Sason
Coding Theory

Gadiel Seroussi
Coding Theory

Wojciech Szpanski
Source Coding

Giovanni Taricco
Communications

Ludo Tolhuisen
Coding Theory

Lang Tong
Detection and Estimation

Sennur Ulukus
Communication Networks

Emanuele Viterbo
Coding Techniques

Andrews Winter
Quantum Information Theory

En-Hui Yang
Source Coding

Hirosuke Yamamoto
Shannon Theory

Lizhong Zheng
Communications

Please refer to the inside back cover for instructions on submitting manuscripts.

IEEE Officers

LEWIS M. Terman, President
LEON R. VIG, President-Elect
BARRY L. SHOOP, Secretary
DAVID G. GREEN, Treasurer
LEAH H. JAMIESON, Past President
EVANGELIA MICHELI-TZANAKOU, Vice President, Educational Activities
FREDERICK C. MINTZER, Director, Division IX—Signals and Applications

John B. Anderson, Book Reviews
E.E. Botto, Communications
Randy Berry, Communication Networks
Helmut Bölcskei, Detection and Estimation
A. Canteaut, Complexity and Cryptography
Ilya Dumer, Coding Theory
Tvui Etzion, Coding Theory
Toru Fujihara, Complexity and Cryptography
Andrea Goldsmith, Communications
Guang Gong, Sequences
Alex Grant, Communications
Ioannis Kontoyiannis, Shannon Theory
Gérard Kramer, Shannon Theory
Adam Krzyżak, Pattern Recognition, Statistical Learning, and Inference
Hans-Andrea Leliger, Coding Techniques
Urbashi Mitra, At Large
Eytan Modiano, Communication Networks
Aria Nosratinia, Communication Networks
Erik Ordentlich, Source Coding
Sundar Rajan, Coding Theory
Justin Romberg, Signal Processing
Igal Sason, Coding Theory
Gadiel Seroussi, Coding Theory
Wojciech Szpanski, Source Coding
Giovanni Taricco, Communications
Ludo Tolhuisen, Coding Theory
Lang Tong, Detection and Estimation
Sennur Ulukus, Communication Networks
Emanuele Viterbo, Coding Techniques
Andrews Winter, Quantum Information Theory
En-Hui Yang, Source Coding
Hirosuke Yamamoto, Shannon Theory
Lizhong Zheng, Communications

IEEE Periodicals

Transactions/Journals Department
Staff Director: FRAN ZAPPELLA
Editorial Director: DAWN MELLEY
Production Director: PETER M. TUOHY
Senior Managing Editor: WILLIAM A. COLACCHIO
Senior Editor: NITA RYBOWICZ

IEEE Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY

Copyright © 2008 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Periodicals Postage Paid at New York, NY, and at additional mailing offices. Postmaster: Send address changes to IEEE TRANSACTIONS ON INFORMATION THEORY, IEEE, 445 Hoes Lane, Piscataway, NJ 08854-4141. GST Registration No. 125634188. CPC Sales Agreement #40013087. Return undeliverable Canada addresses to: Pitney Bowes IMEX, P.O. Box 4332, Stantond Rd., Toronto, ON MSW 3J4, Canada. Printed in U.S.A.

Digital Object Identifier 10.1109/TIT.2008.925832