Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors

Yuliang Zheng1 and Xian-Mo Zhang2

1 School of Comp & Info Tech, Monash University, McMahons Road, Frankston, Melbourne, VIC 3199, Australia. E-mail: yuliang@pscit.monash.edu.au

URL: http://www.pscit.monash.edu.au/links/

2 School of Info Tech & Comp Sci, the University of Wollongong, Wollongong NSW 2522, Australia. E-mail xianmo@cs.uow.edu.au

Abstract. This paper proves (i) in any \((n-1)\)-dimensional linear subspace, the non-propagative vectors of a function with \(n\) variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any \((n-2)\)-dimensional linear subspace and there exist three non-propagative vectors in any \((n-1)\)-dimensional linear subspace, except for those functions whose nonlinearity takes special values.

Key Words:
Cryptography, Boolean Function, Propagation, Nonlinearity.

1 Introduction

In examining the nonlinearity properties of a function \(f\) with \(n\) variables, it is important to understand \(\mathcal{R}_f\), the set of so-called non-propagative vectors where \(f\) does not satisfy the propagation criterion. In this work, we are concerned with both \(#\mathcal{R}_f\) (the number of non-propagative vectors in \(\mathcal{R}_f\)) and the distribution of \(\mathcal{R}_f\). More specifically, we prove two properties of \(\mathcal{R}\). One is called the strong linear dependence and the other the unbiased distribution, of \(\mathcal{R}\).

The strong linear dependence property states that if \(W\) is a \((n-1)\)-dimensional linear subspace satisfying \(#(\mathcal{R} \cap W) \geq 4\), then the non-zero vectors in \(\mathcal{R} \cap W\) are linearly dependent. This improves a previously known result. The unbiased distribution property says that any function \(f\) with \(n\) variables, except for those whose nonlinearity takes the special value of \(2^{n-1} - 2^{\frac{n-1}{2}}\), \(2^{n-1} - 2^{\frac{n}{2}}\), \(2^{n-1} - 2^{\frac{3n}{2}}\), \(2^{n-1} - 2^{\frac{2n}{2}}\), fulfills the condition that every \((n-2)\)-dimensional linear subspace contains a non-zero vector in \(\mathcal{R}_f\) and every \((n-1)\)-dimensional linear subspace contains at least three non-zero vectors in \(\mathcal{R}_f\). In special cases, \(#(\mathcal{R} \cap W)\) may significantly affect other cryptographic properties of a function. The strong linear dependence and the unbiased distribution are helpful for the design of cryptographic functions as these conclusions provide more information on the number and the status of non-propagative vectors in any \((n-1)\)-dimensional linear subspace.
2 Cryptographic Criteria of Boolean Functions

We consider functions from V_n to $GF(2)$ (or simply functions on V_n), V_n is the vector space of n tuples of elements from $GF(2)$. The truth table of a function f on V_n is a $(0, 1)$-sequence defined by $(f(\alpha_0), f(\alpha_1), \ldots, f(\alpha_{2^n-1}))$, and the sequence of f is a $(1, -1)$-sequence defined by $((-1)^{f(\alpha_0)}, (-1)^{f(\alpha_1)}, \ldots, (-1)^{f(\alpha_{2^n-1})})$, where $\alpha_0 = (0, \ldots, 0, 0), \alpha_1 = (0, \ldots, 0, 1), \ldots, \alpha_{2^n-1} = (1, \ldots, 1, 1)$. The matrix of f is a $(1, -1)$-matrix of order 2^n defined by $M = ((-1)^{f(\alpha_i \oplus \alpha_j)})$ where \oplus denotes the addition in $GF(2)$. f is said to be balanced if its truth table contains an equal number of ones and zeros.

Given two sequences $\tilde{a} = (a_1, \ldots, a_m)$ and $\tilde{b} = (b_1, \ldots, b_m)$, their componentwise product is defined by $\tilde{a} \ast \tilde{b} = (a_1 b_1, \ldots, a_m b_m)$. In particular, if $m = 2^n$ and \tilde{a}, \tilde{b} are the sequences of functions f and g on V_n respectively, then $\tilde{a} \ast \tilde{b}$ is the sequence of $f \oplus g$ where \oplus denotes the addition in $GF(2)$.

Let $\tilde{a} = (a_1, \ldots, a_m)$ and $\tilde{b} = (b_1, \ldots, b_m)$ be two sequences or vectors, the scalar product of \tilde{a} and \tilde{b}, denoted by $\langle \tilde{a}, \tilde{b} \rangle$, is defined as the sum of the component-wise multiplications. In particular, when \tilde{a} and \tilde{b} are from V_m, $\langle \tilde{a}, \tilde{b} \rangle = a_1 b_1 \oplus \cdots \oplus a_m b_m$, where the addition and multiplication are over $GF(2)$, and when \tilde{a} and \tilde{b} are $(1, -1)$-sequences, $\langle \tilde{a}, \tilde{b} \rangle = \sum_{i=1}^{m} a_i b_i$, where the addition and multiplication are over the reals.

An affine function f on V_n is a function that takes the form of $f(x_1, \ldots, x_n) = a_1 x_1 \oplus \cdots \oplus a_n x_n \oplus c$, where $a_j, c \in GF(2), j = 1, 2, \ldots, n$. Furthermore, f is called a linear function if $c = 0$.

A $(1, -1)$-matrix N of order n is called a Hadamard matrix if $N^T N = nI_n$, where N^T is the transpose of N and I_n is the identity matrix of order n. A Sylvester-Hadamard matrix of order 2^n, denoted by H_n, is generated by the following recursive relation

$$H_0 = 1, \quad H_n = \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}, \quad n = 1, 2, \ldots$$

Let $\xi_i, 0 \leq i \leq 2^n - 1$, be the ith row of H_n. It is known that ξ_i is the sequence of a linear function $\varphi_i(x)$ defined by the scalar product $\varphi_i(x) = \langle \alpha_i, x \rangle$, where α_i is the ith vector in V_n according to the ascending alphabetical order.

The Hamming weight of a $(0, 1)$-sequence ξ, denoted by $W(\xi)$, is the number of ones in the sequence. Given two functions f and g on V_n, the Hamming distance $d(f, g)$ between them is defined as the Hamming weight of the truth table of $f(x) \oplus g(x)$, where $x = (x_1, \ldots, x_n)$.

Definition 1. The nonlinearity of a function f on V_n, denoted by N_f, is the minimal Hamming distance between f and all affine functions on V_n, i.e.,

$$N_f = \min_{\varphi_1, \varphi_2, \ldots, \varphi_{2^n}} d(f, \varphi_i)$$

where $\varphi_1, \varphi_2, \ldots, \varphi_{2^n}$ are all the affine functions on V_n.

The following characterisations of nonlinearity will be useful (for a proof see for instance [2]).
Lemma 1. The nonlinearity of f on V_n can be expressed by

$$N_f = 2^{n-1} - \frac{1}{2} \max\{|(\xi, \ell_i)|, 0 \leq i \leq 2^n - 1\}$$

where ξ is the sequence of f and $\ell_0, \ldots, \ell_{2^n-1}$ are the rows of H_n, namely, the sequences of linear functions on V_n.

Definition 2. Let f be a function on V_n. For a vector $\alpha \in V_n$, denote by $\xi(\alpha)$ the sequence of $f(x \oplus \alpha)$. Thus $\xi(0)$ is the sequence of f itself and $\xi(0)*\xi(\alpha)$ is the sequence of $f(x) \oplus f(x \oplus \alpha)$. Set

$$\Delta_f(\alpha) = (\xi(0), \xi(\alpha)),$$

the scalar product of $\xi(0)$ and $\xi(\alpha)$. $\Delta(\alpha)$ is called the auto-correlation of f with a shift α. Write

$$\Delta_M = \max\{|\Delta(\alpha)|, \alpha \in V_n, \alpha \neq 0\}$$

We omit the subscript of $\Delta_f(\alpha)$ if no confusion occurs.

Definition 3. Let f be a function on V_n. We say that f satisfies the propagation criterion with respect to α if $f(x) \oplus f(x \oplus \alpha)$ is a balanced function, where $x = (x_1, \ldots, x_n)$ and α is a vector in V_n. Furthermore f is said to satisfy the propagation criterion of degree k if it satisfies the propagation criterion with respect to every non-zero vector α whose Hamming weight is not larger than k (see [3]).

The strict avalanche criterion (SAC) [3] is the same as the propagation criterion of degree one.

Obviously, $\Delta(\alpha) = 0$ if and only if $f(x) \oplus f(x \oplus \alpha)$ is balanced, i.e., f satisfies the propagation criterion with respect to α.

Definition 4. Let f be a function on V_n. $\alpha \in V_n$ is called a linear structure of f if $|\Delta(\alpha)| = 2^n$ (i.e., $f(x) \oplus f(x \oplus \alpha)$ is a constant).

For any function f, $\Delta(\alpha_0) = 2^n$, where α_0 is the zero vector on V_n. It is easy to verify that the set of all linear structures of a function f form a linear subspace of V_n, whose dimension is called the linearity of f. It is also well-known that if f has non-zero linear structures, then there exists a nonsingular $n \times n$ matrix B over $GF(2)$ such that $f(xB) = g(y) \oplus h(z)$, where $x = (y, z)$, $y \in V_3$, $z \in V_3$, g is a function on V_3 that has no non-zero linear structures, and h is an affine function on V_3.

The following lemma is the re-statement of a relation proved in Section 2 of [1].

Lemma 2. For every function f on V_n, we have

$$(\Delta(\alpha_0), \Delta(\alpha_1), \ldots, \Delta(\alpha_{2^n-1}))H_n = (\xi, \ell_0)(^2, (\xi, \ell_1)(^2, \ldots, (\xi, \ell_{2^n-1})(^2),$$

where ξ denotes the sequence of f and ℓ_i is the ith row of H_n, $i = 0, 1, \ldots, 2^n - 1$.

The balance and the nonlinearity are necessary in most cases. The propagation of especially the SAC, is an important cryptographic criterion.
3 Introduction to R

Notation 1. Let f be a function on V_n. Set $R_f = \{ \alpha \mid \Delta(\alpha) \neq 0, \alpha \in V_n \}$, $\Delta_M = \max\{ |\Delta(\alpha)| \mid \alpha \in V_n, \alpha \neq 0 \}$.

We simply write R_f as R if no confusion occurs. It is easy to verify that $\#R$ and Δ_M are invariant under any nonsingular linear transformation on the variables, where $\#$ denotes the cardinal number of a set.

$\#R$ and the distribution of R reflects the propagation characteristics, while Δ_M forecasts the avalanche property of the function. Therefore information on R and Δ_M is useful in determining important cryptographic characteristics of f. Usually, small $\#R$ and Δ_M are desirable.

Definition 5. A function f on V_n is called a bent function \cite{4} if $\langle \xi, \xi_i \rangle^2 = 2^n$ for every $i = 0, 1, \ldots, 2^n - 1$, where ξ_i is the ith row of H_n.

A bent function on V_n exists only when n is even, and it achieves the highest possible nonlinearity $2^{n-1} - 2^{\frac{n-1}{2}}$. The algebraic degree of bent functions on V_n is at most $\frac{1}{2} n$ \cite{4}. From \cite{4} and Parseval's equation, we have the following:

Theorem 1. Let f be a function on V_n. Then the following statements are equivalent: (i) f is bent, (ii) $\#R = 1$, (iii) $\Delta_M = 0$, (iv) the nonlinearity of f, N_f, satisfies $N_f = 2^{\frac{n}{2}} - 2^{\frac{n-1}{2}}$, (v) the matrix of f is an Hadamard matrix.

The following result is called the linear dependence theorem that can be found in \cite{7}

Theorem 2. Let f be a function on V_n that satisfies the propagation criterion with respect to all but $k + 1$ vectors $0, \beta_1, \ldots, \beta_k$ in V_n, where $k \geq 2$. Then β_1, \ldots, β_k are linearly dependent, namely, there exist k constants $c_1, \ldots, c_k \in GF(2)$, not all of which are zeros, such that $c_1 \beta_1 \oplus \cdots \oplus c_k \beta_k = 0$.

Note that $n + 1$ non-zero vectors in V_n must be linearly dependent. Hence if $\#R \geq n + 2$ (i.e., $\#R - (1) \geq n + 1$) then Theorem 2 is trivial. For this reason, we improve Theorem 2 in this paper. We prove two properties of R: the strong linear dependence and the unbiased distribution of R.

4 The Strong Linear Dependence Theorem

Note the ith (i.e., the α_ith) row of H_n, where $\alpha_i \in V_n$ is the binary representation of integer i, $i = 0, 1, \ldots, 2^n - 1$, is the sequence of linear function $\varphi_i(x) = \langle \alpha_i, x \rangle$. Lemma 4 of \cite{7} can be restated as follows:

Lemma 3. Let Q be the $2^n \times q$ that consists of the α_jth, \ldots, the α_jth rows of H_n, where each $\alpha_j \in V_n$ is the binary representation of integer j, $0 \leq j \leq 2^n - 1$. If $\alpha_{j_1}, \ldots, \alpha_{j_q}$ are linearly independent then each $(\alpha_1, \ldots, \alpha_j)^T$, where each $\alpha_j = \pm 1$, appears as a column in Q precisely $2^{n-\xi}$ times.
The following Lemma can be found in [7].

Lemma 4. Let $n \geq 3$ be a positive integer and $2^n = \sum_{j=1}^{4} a_j^2$ where $a_1 \geq a_2 \geq a_3 \geq a_4 \geq 0$ and each a_j is an integer. We have the following statements:

(i) if n is odd, then $a_1^2 = a_2^2 = 2^{n-1}$, $a_3 = a_4 = 0$.

(ii) if n is even, then $a_1^2 = 2^n$, $a_2 = a_3 = a_4 = 0$ or $a_1^2 = a_2^2 = a_3^2 = 2^{n-2}$.

Lemma 5. For every function f on V_n, we have

$$2(\Delta(\alpha_0), \Delta(\alpha_2), \ldots, \Delta(\alpha_{2^{n-2}}))H_{n-1}$$

$$= (\langle \xi, \ell_0 \rangle^2 + \langle \xi, \ell_1 \rangle^2, \langle \xi, \ell_2 \rangle^2 + \langle \xi, \ell_3 \rangle^2, \ldots, \langle \xi, \ell_{2^{n-2}} \rangle^2 + \langle \xi, \ell_{2^{n-1}} \rangle^2)$$

where ξ denotes the sequence of f and ℓ_i is the ith row of H_n, $i = 0, 1, \ldots, 2^n - 1$.

Proof. From Lemma 2,

$$2^n(\Delta(\alpha_0), \Delta(\alpha_1), \ldots, \Delta(\alpha_{2^{n-1}})) = (\langle \xi, \ell_0 \rangle^2, \langle \xi, \ell_1 \rangle^2, \ldots, \langle \xi, \ell_{2^{n-1}} \rangle^2)H_n$$ (1)

Comparing the 0th, the 2nd, ..., the (2^n-2)th terms in the two sides of equality (1), we obtain

$$2^n(\Delta(\alpha_0), \Delta(\alpha_2), \ldots, \Delta(\alpha_{2^{n-2}}))$$

$$= (\langle \xi, \ell_0 \rangle^2 + \langle \xi, \ell_1 \rangle^2, \langle \xi, \ell_2 \rangle^2 + \langle \xi, \ell_3 \rangle^2, \ldots, \langle \xi, \ell_{2^{n-2}} \rangle^2 + \langle \xi, \ell_{2^{n-1}} \rangle^2)H_{n-1}$$

This proves the lemma. □

The following theorem is called the strong linearly dependence theorem which is an improvement on Theorem 2 (the linearly dependence theorem).

Theorem 3. Let f be a function on V_n, and W be a $(n - 1)$-dimensional linear subspace satisfying $\Re \cap W = \{0, \beta_1, \ldots, \beta_k\}$ ($k \geq 3$). Then β_1, \ldots, β_k are linearly dependent, namely, there exist k constants $c_1, \ldots, c_k \in GF(2)$ with $(c_1, \ldots, c_k) \neq (0, \ldots, 0)$, such that $c_1\beta_1 \oplus \cdots \oplus c_k\beta_k = 0$.

Proof. The theorem is obviously true if $k > n$. Now we prove the theorem for $k \leq n$. We only need to prove the lemma in the special case when W is composed of $a_0, a_2, \ldots, a_{2^{n-2}}$, where $a_{2j} \in V_n$ is the binary representation of an even number $2j$, $j = 0, 1, \ldots, 2^{n-1} - 1$. In other words, W is composed of all the vectors in V_n that can be expressed in the form $(a_1, \ldots, a_{n-1}, 0)$, where each $a_j \in GF(2)$. In the general case, we can use a nonsingular linear transformation on the variables so as to change W into the special case. Let ξ be the sequence of f.

Since $\beta_j \in W, f = 1, \ldots, k, \beta_j$ can be expressed as $\beta_j = (\gamma_j, 0)$ where $\gamma_j \in V_{n-1}, j = 1, \ldots, k,$ and $0 \in GF(2)$.

Let P be a $(k+1) \times 2^{n-1}$ matrix composed of the 0th, the γ_1th, \ldots, the γ_kth rows of H_{n-1}. Set $a_j^2 = (\xi, \xi_j)^2$, $j = 0, 1, \ldots, 2^n - 1$. Note that $\Delta(\alpha) = 0$ if $\alpha \not\in \{0, \beta_1, \ldots, \beta_k\}$. Hence the equality in Lemma 5 can be specialized as

$$2(\Delta(0), \Delta(\beta_1), \ldots, \Delta(\beta_k))P = (a_0^2 + a_1^2 + a_2^2, \ldots, a_{2^n-2}^2 + a_{2^n-1}^2) \quad (2)$$

where $\Delta(0)$ is identical to $\Delta(\alpha_0)$ where $\alpha_0 = 0$.

Write $P = (p_{ij})$, $i = 0, 1, \ldots, k$, $j = 0, 1, \ldots, 2^n-1 - 1$. As the top row of P is $(1, 1, \ldots, 1)$, from (2),

$$2(\Delta(0) + \sum_{i=1}^k p_{ij} \Delta(\beta_i)) = a_{2j}^2 + a_{2j+1}^2 \quad (3)$$

$j = 0, 1, \ldots, 2^n-1 - 1$. Let P^* be the submatrix of P obtained by removing the top row from P.

We now prove the theorem by contradiction. Suppose k vectors in V_n, β_1, \ldots, β_k, are linearly independent. Hence k vectors in $V_{n-1}, \gamma_1, \ldots, \gamma_k$ are also linearly independent and hence $k \leq n - 1$.

Applying Lemma 3 to matrix P^*, we conclude that each k-dimensional $(1, -1)$-vector appears in P^*, as a column vector of P^* precisely 2^n-1-k times. Thus for each fixed j there exists a number $j_0, 0 \leq j_0 \leq 2^n-1 - 1$, such that $(p_{1j_0}, \ldots, p_{kj_0}) = -(p_{1j}, \ldots, p_{kj})$ and hence

$$2(\Delta(0) - \sum_{i=1}^k p_{ij_0} \Delta(\beta_i)) = a_{2j_0}^2 + a_{2j_0+1}^2 \quad (4)$$

Adding (3) and (4) together, we have $4\Delta(0) = a_j^2 + a_{2j+1}^2 + a_{2j_0}^2 + a_{2j_0+1}^2$. Hence $a_j^2 + a_{2j+1}^2 + a_{2j_0}^2 + a_{2j_0+1}^2 = 2^{n+2}$. There are two cases to be considered: even n and odd n.

Case 1: n is odd. By using Lemma 4,

$$\{a_j^2, a_{2j+1}^2, a_{2j_0}^2, a_{2j_0+1}^2 \} = \{2^{n+1}, 2^n, 0, 0\}, j = 0, 1, \ldots, 2^n-1 \quad (5)$$

Hence from (3), we have $\Delta(0) + \sum_{i=1}^k p_{ij} \Delta(\beta_i) = 2^{n+1}, 2^n, 0$ and hence

$$\sum_{i=1}^k p_{ij} \Delta(\beta_i) = 2^n, 0, -2^n, j = 0, 1, \ldots, 2^n - 1 \quad (6)$$

For each fixed j, rewrite (6) as

$$p_{1j} \Delta(\beta_1) + \sum_{i=2}^k p_{ij} \Delta(\beta_i) = 2^n, 0, -2^n \quad (7)$$

By using Lemma 3, there exists a number $j_1, 0 \leq j_1 \leq 2^n-1 - 1$, such that $(p_{1j_1}, p_{2j_1}, \ldots, p_{kj_1}) = (p_{1j}, -p_{2j}, \ldots, -p_{kj})$.

Hence

\[p_{ij}, \Delta(\beta_i) - \sum_{i=2}^{k} p_{ij}, \Delta(\beta_i) = 2^n, 0, -2^n \]
\hfill (8)

Adding (7) and (8) together, we have

\[p_{ij}, \Delta(\beta_1) = \pm 2^n, \pm 2^{n-1}, 0 \]

Since \(\Delta(\beta_1) \neq 0 \), we conclude \(\Delta(\beta_1) = \pm 2^n, \pm 2^{n-1} \). By the same reasoning we can prove

\[\Delta(\beta_j) = \pm 2^n, \pm 2^{n-1}, j = 1, 2, \ldots, k \]
\hfill (9)

Thus we can write

\[(\Delta(\beta_1), \ldots, \Delta(\beta_k)) = 2^{n-1}(b_1, \ldots, b_k) \]
\hfill (10)

where each \(b_j = \pm 1, \pm 2 \). By using Lemma 3, there exists a number \(s \), \(0 \leq s \leq 2^n - 1 \), such that

\[(p_{1s}, \ldots, p_{ks}) = (\frac{b_1}{|b_1|}, \ldots, \frac{b_k}{|b_k|}). \]
\hfill (11)

Due to (10) and (11),

\[\sum_{i=1}^{k} p_{is}, \Delta(\beta_i) = \sum_{i=1}^{k} \frac{b_i}{|b_i|} \Delta(\beta_i) = \sum_{i=1}^{k} \frac{b_i^2}{|b_i|} 2^{n-1} = 2^{n-1} \sum_{i=1}^{k} |b_i| \geq k2^{n-1}. \]
\hfill (12)

Since \(k \geq 3 \), (12) contradicts (6).

Case 2: \(n \) is even. By using Lemma 4,

\(\{a_j^2, a_{2j+1}^2, a_{3j}^2, a_{3j+1}^2\} = \{2^{n+2}, 0, 0, 0\} \) or

\(\{a_j^2, a_{2j+1}^2, a_{3j}^2, a_{3j+1}^2\} = \{2^n, 2^n, 2^n, 2^n\} \), \(j = 0, 1, \ldots, 2^{n-1} \)
\hfill (13)

Hence from (3), we have \(\Delta(0) + \sum_{i=1}^{k} p_{ij}, \Delta(\beta_i) = 2^{n+1}, 2^n, 0 \), and hence

\[\sum_{i=1}^{k} p_{ij}, \Delta(\beta_i) = 2^n, 0, -2^n \]

Repeating the same deduction as in Case 1, we obtain a contradiction in Case 2.

Summarizing Cases 1 and 2, we conclude that the assumption that \(\beta_1, \ldots, \beta_k \) are linearly independent is wrong. This proves the theorem.

\[\square \]

Theorem 3 shows that \(R \) is subject to crucial restrictions. We now compare Theorem 3 with Theorem 2. Since \(n + 1 \) non-zero vectors in \(V_n \) must be linearly dependent, Theorem 2 is trivial when \(\#R \geq n + 2 \) (i.e., \(\#(R - \{0\}) \geq n + 1 \)). In contrast, in Theorem 3 the linear dependence of vectors takes place in each \(R \cap W \) not only in \(R \).

We notice that there exist \(n - 1 \) \((n - 1) \)-dimensional linear subspaces, Hence Theorem 3 is more profound than Theorem 2.
5 The Unbiased Distribution of \mathcal{R}

In this section we focus on the distribution of \mathcal{R} for the functions on V_n, whose nonlinearity does not take the special value $2^{n-1} - 2^\frac{n-1}{2}$ or $2^n - 2^n$ or $2^n - 2^{n-1}$.

The next result is from [6] (Theorem 18).

Lemma 6. Let f be a function on V_n ($n \geq 2$), ξ be the sequence of f, and p is an integer, $2 \leq p \leq n$. If $\langle \xi, \ell_j \rangle \equiv 0 \pmod{2^{n-p+2}}$, where ℓ_j is the jth row of H_n, $j = 0, 1, \ldots, 2^n - 1$, then the algebraic degree of f is at most $p - 1$.

Lemma 7. For every function f on V_n, we have

$$4(\Delta(\alpha_0), \Delta(\alpha_4), \ldots, \Delta(\alpha_{2^n-4}))H_{n-2} = (\sum_{j=0}^3 \langle \xi, \ell_j \rangle^2, \sum_{j=4}^7 \langle \xi, \ell_j \rangle^2, \ldots, \sum_{j=2^n-4}^{2^n-1} \langle \xi, \ell_j \rangle^2)$$

Where ξ denotes the sequence of f and ℓ_i is the ith row of H_n, $i = 0, 1, \ldots, 2^n - 1$.

Proof. Comparing the $4j$th terms, $j = 0, 1, \ldots, 2^n - 2 - 1$, in the two sides of equality (1), we obtain

$$2^n(\Delta(\alpha_0), \Delta(\alpha_4), \ldots, \Delta(\alpha_{2^n-4}))$$

$$= (\sum_{j=0}^3 \langle \xi, \ell_j \rangle^2, \sum_{j=4}^7 \langle \xi, \ell_j \rangle^2, \ldots, \sum_{j=2^n-4}^{2^n-1} \langle \xi, \ell_j \rangle^2)H_{n-2}$$

This proves the lemma.

Theorem 4. Let f be a function on V_n, and U be a $(n - 2)$-dimensional linear subspace satisfying $\#(\mathcal{R} \cap U) = 1$ (i.e., $\mathcal{R} \cap U = \{0\}$). Then we have

(i) if n is odd, then the nonlinearity of f satisfies $N_f = 2^{n-1} - 2^\frac{n-1}{2}$ and the algebraic degree of f is at most $2^{\frac{n+1}{2}}$.

(ii) if n is even, then f is bent or the nonlinearity of f satisfies $N_f = 2^{n-1} - 2^n$ and the algebraic degree of f is at most $2^{\frac{n}{2} + 1}$.

Proof. We only need to prove the theorem in the special case when U is composed of $\alpha_0, \alpha_4, \alpha_8, \ldots, \alpha_{2^n-4}$, where $\alpha_j \in V_n$ is the binary representation of even number $4j$, $j = 0, 1, 2, \ldots, 2^n - 2 - 1$. In other words, U is composed of all the vectors in V_n that can be expressed in the form $(a_1, \ldots, a_{n-2}, 0, 0)$, where each $a_j \in GF(2)$. For U in general case, we can use a nonsingular linear transformation on the variables so as to change U into the special case. Let ξ be the sequence of f. Set $a_j^2 = \langle \xi, \ell_j \rangle^2$, $j = 0, 1, \ldots, 2^n - 1$.

Since $\Delta(0) = 2^n$ and $\Delta(\alpha_j) = 0$, $j = 1, 2, \ldots, 2^n - 2 - 1$, the equality in Lemma 7 is specialized as
\[2^{n+2}(1, \ldots, 1) = \left(\sum_{j=0}^{3} a_j^2 \sum_{j=4}^{7} a_j^2 \ldots, \sum_{j=2^{n-4}}^{2^n-1} a_j^2 \right) \] (14)

\(j = 0, 1, \ldots, 2^{n-2} - 1 \).

(i) When \(n \) is odd, by using Lemma 4,

\[\{a_{ij}^2, a_{ij+1}^2, a_{ij+3}^2, a_{ij+4}^2\} = \{2^{n+1}, 2^{n+1}, 0, 0\}, j = 0, 1, \ldots, 2^{n-2} \]

By using Lemma 1, we have proved the nonlinearity of \(f \) satisfies \(N_f = 2^{n-1} - 2^{k(n-1)} \), and by using Lemma 6, we have proved that the algebraic degree of \(f \) is at most \(2^{\frac{1}{2}(n+1)} \).

(ii) When \(n \) is even. By using Lemma 4,

\[\{a_{ij}^2, a_{ij+1}^2, a_{ij+3}^2, a_{ij+4}^2\} = \{2^n, 2^n, 2^n, 2^n\} \text{ or } \{2^{n+2}, 0, 0, 0\}, j = 0, 1, \ldots, 2^{n-2} - 1, \]

If there exists a number \(j_0 \), \(0 \leq j_0 \leq 2^{n-2} - 1 \), such that

\[\{a_{j_0}^2, a_{j_0+1}^2, a_{j_0+2}^2, a_{j_0+3}^2\} = \{2^n, 2^n, 2^n, 2^n\} \]

then by using Lemma 1, we have proved that the nonlinearity of \(f \) satisfies \(N_f = 2^{n-1} - 2^{n} \), and by using Lemma 6, we have proved that the algebraic degree of \(f \) is at most \(2^{\frac{1}{2}(n+1)} \).

If there exists no such \(j_0 \), mentioned as above, i.e., \(\{a_{ij}^2, a_{ij+1}^2, a_{ij+3}^2, a_{ij+4}^2\} = \{2^n, 2^n, 2^n, 2^n\}, j = 0, 1, \ldots, 2^{n-2} - 1 \). Then \(f \) is bent.

To emphasise the distribution of \(\hat{R} \) we modify Theorem 4 as follows:

Theorem 5. Let \(f \) be a function on \(V_n \). If the nonlinearity of \(f \) does not take the special value \(2^{n-1} - 2^{\frac{1}{2}(n-1)} \) or \(2^{n-1} - 2^{2n} \) or \(2^{n-1} - 2^{n-1} + 1 \), then \(\#(\hat{R} \cap U) \geq 2 \) where \(U \) is any \((n-2)\)-dimensional linear subspace, in other words, every \((n-2)\)-dimensional linear subspace \(U \) contains a non-zero vector in \(\hat{R} \).

There exist many methods to locate all the \((n-1)\)-dimensional linear subspaces and all the \((n-2)\)-dimensional linear subspaces in \(V_n \). For example, let \(\varphi_\alpha \) denote the linear function on \(V_n \), where \(\alpha \in V_n \), such that \(\varphi_\alpha(x) = \langle \alpha, x \rangle \). Hence \(W = \{\gamma | \alpha \in V_n, \varphi_\alpha(\gamma) = 0\} \) is a \((n-1)\)-dimensional linear subspace and each \((n-1)\)-dimensional linear subspace can be expressed in this form.

Also for any \(\alpha, \alpha' \in V_n \) with \(\alpha \neq \alpha' \), \(U = \{\gamma | \alpha \in V_n, \varphi_\alpha(\gamma) = 0, \varphi_{\alpha'}(\gamma) = 0\} \) is a \((n-2)\)-dimensional linear subspace and each \((n-2)\)-dimensional linear subspace can be expressed in this form.

Lemma 8. Let \(\Omega \) be a subset of \(V_n \) with \(0 \not\in \Omega \). If there exists a positive integer \(p \) such that \(\#(\Omega \cap U) \geq p \) holds for every \((k-1)\)-dimensional linear subspace \(U \), then \(\#\Omega \geq 2p + 1 \).
Proof. Note that each non-zero vector is included in precisely \(2^{k-1} - 1\) \((k - 1)\)-dimensional linear subspaces, on the other hand, there exist exactly \(2^k - 1\) \((k - 1)\)-dimensional linear subspaces. Hence \((2^{k-1} - 1)\#\Omega = \sum_U \#(\Omega \cap U)\). From \(#(\Omega \cap U) \geq p\), we conclude that \((2^{k-1} - 1)\#\Omega \geq (2^k - 1)p\). Since \(\frac{2^{k-1} - 1}{2^{k-1} - 1} > 2\), \(#\Omega > 2p\) or \(#\Omega \geq 2p + 1\). □

Theorem 6. Let \(f\) be a function on \(V_n\). If the nonlinearity of \(f\) does not take the special values \(2^{n-1} - 2\binom{n-1}{2}\) or \(2^{n-1} - 2\binom{n}{2}\) or \(2^{n-1} - 2\binom{n}{3}\), then \(#(\mathbb{R} \cap W) \geq 4\) for every \((n - 1)\)-dimensional linear subspace \(W\), in other words, every \((n - 1)\)-dimensional linear subspace \(W\) contains at least three non-zero vectors in \(\mathbb{R}\).

Proof. Let \(W\) be an arbitrary \((n - 1)\)-dimensional linear subspace and \(U\) be an arbitrary \((n - 2)\)-dimensional linear subspace with \(U \subset W\). Note that the inequality in Theorem 5 can be rewritten as

\[
\#((\mathbb{R} - \{0\}) \cap U) \geq 1
\]

and \(((\mathbb{R} - \{0\}) \cap W) \cap U = (\mathbb{R} - \{0\}) \cap U\). Applying Lemma 8, we have proved \(#((\mathbb{R} - \{0\}) \cap W) \geq 3\). Since \(0 \in \mathbb{R} \cap W\), \(#(\mathbb{R} \cap W) \geq 4\). □

Theorems 5 and 6 are helpful to locate the non-propagative vectors.

The properties mentioned together in Theorems 5 and 6 are called the unbiased distribution of \(\mathbb{R}\), with respect to every \((n - 2)\)-dimensional linear subspace and every \((n - 1)\)-dimensional linear subspace.

6 Distribution of \(\mathbb{R}\) in Special Cases

We now turn to the case \(#(\mathbb{R}_f \cap W) \leq 3\) where \(W\) is an \((n - 1)\)-dimensional linear subspace. The following Lemma can be found in [7]:

Lemma 9. Let \(n \geq 2\) be a positive integer and \(2^n = a^2 + b^2\) where \(a \geq b \geq 0\) and both \(a\) and \(b\) are integers. Then \(a^2 = 2^n\) and \(b = 0\) when \(n\) is even, and \(a^2 = b^2 = 2^{n-1}\) when \(n\) is odd.

Theorem 7. Let \(f\) be a function on \(V_n\), and \(W\) be an \((n - 1)\)-dimensional linear subspace satisfying \(#(\mathbb{R} \cap W) = 1\) (i.e., \(\mathbb{R} \cap W = \{0\}\)). We have

(i) \(f\) has at most one non-zero linear structure,
(ii) if \(n\) is odd, then the nonlinearity of \(f\) satisfies \(N_f = 2^{n-1} - 2\binom{n-1}{2}\) and the algebraic degree of \(f\) is at most \(2^{\binom{n}{3}}\),
(iii) if \(n\) is even, then \(f\) is bent.

Proof. (i) Let \(\alpha \in V_n\) and \(\alpha \not\in W\). From linear algebra, \(V_n = W \cup (\alpha^* \oplus W)\), where \(\alpha^* \oplus W = \{\alpha^* \oplus \alpha \mid \alpha \in W\}\), \(W\) and \(\alpha^* \oplus W\) are disjoint. We now prove that \(f\) has at most one non-zero linear structure by contradiction. Suppose \(f\) has two
non-zero linear structures, β_1 and β_2 with $\beta_1 \neq \beta_2$. Since all linear structures of f
form a linear subspace of V_n, $\beta_1 \oplus \beta_2$ is also a non-zero linear structures of f and hence $\beta_1 \oplus \beta_2 \in \mathbb{R}$. Since $\mathbb{R} \cap W = \{0\}$, $\beta_1, \beta_2 \in \alpha^* \oplus W$. Obviously $\beta_1 \oplus \beta_2 \in W$
and hence $\beta_1 \oplus \beta_2 \in \mathbb{R} \cap W$. This contradicts the condition $\mathbb{R} \cap W = \{0\}$. The contradiction proves that f has at most one non-zero linear structure.

Recall the proof of Theorem 3, (3) can be specialized as $2\Delta(0) = a_2^2 + a_{2j+1}^2$ and hence $a_2^2 + a_{2j+1}^2 = 2^{n+1}$, where $j = 0, 1, \ldots, 2^{n-1} - 1$.

(ii) If n be odd, from Lemma 9, $\{a_2^2, a_{2j+1}^2\} = \{2^{n+1}, 0\}$, where $j = 0, 1, \ldots, 2^{n-1} - 1$. From Lemma 1, the nonlinearity of f satisfies $N_j = 2^{n-1} - 2^{\frac{3}{2}(n-1)}$. By using Lemma 6 we conclude that the algebraic degree of f is at most $2^{\frac{3}{2}(n+1)}$.

(iii) If n is even, due to Lemma 9, $a_2^2 = a_{2j+1}^2 = 2^n$, where $j = 0, 1, \ldots, 2^{n-1} - 1$. This proves that f is bent.

\[\Box \]

Example 1. Let n be a positive odd number and $f(x_1, \ldots, x_n) = x_1 \oplus g(x_2, \ldots, x_n)$
where g is a bent function in V_{n-1}. Let W be an $(n-1)$-dimensional linear subspace of V_n, composed of all the vectors in V_n, that can be expressed in the form $(0, a_2, \ldots, a_n)$, where each $a_j \in GF(2)$. It is easy to see $\alpha^* = (1, 0, \ldots, 0) \in V_n$
is a non-zero linear structure of f and $\mathbb{R} \cap W = \{0\}$. Due to (ii) of Theorem 7, $N_j = 2^{n-1} - 2^{\frac{3}{2}(n-1)}$.

We can restate (iii) of Theorem 7 as follows:

Proposition 1. Let f be a function on V_n where n is even. If there exists an $(n-1)$-dimensional linear subspace W_0 satisfying $\#(\mathbb{R} \cap W_0) = 1$ (i.e., $\mathbb{R} \cap W_0 = \{0\}$), then f satisfies $\mathbb{R} \cap W = \{0\}$, for every $(n-1)$-dimensional linear subspace W.

Next we examine the case of $\#(\mathbb{R} \cap W) = 2$.

Theorem 8. Let f be a function on V_n. If there exists a $(n-1)$-dimensional linear subspace W satisfying $\mathbb{R} \cap W = \{0, \beta_1\}$, then we have

(i) β_1 is a non-zero linear structure of f,
(ii) if n is odd, then the nonlinearity of f satisfies $N_j = 2^{n-1} - 2^{\frac{3}{2}(n-1)}$ and the algebraic degree of f is at most $2^{\frac{3}{2}(n+1)}$,
(iii) if n is even, then $N_j = 2^{n-1} - 2^{\frac{3}{2}n}$ and the algebraic degree of f is at most $2^{\frac{3}{2}n+1}$.

Proof. Since any single non-zero vector is linearly independent, we can keep the deduction in the proof of Theorem 3 until inequality (12) where we need the condition $k \geq 3$.

(i) Recall the proof of Theorem 3, (6) can be specialized as $p_{1,j} \Delta(\beta_1) = 2^n, 0, -2^n, j = 0, 1, \ldots, 2^n - 1$. Since $\beta_1 \in \mathbb{R}$, $\Delta(\beta_1) \neq 0$. Hence $\Delta(\beta_1) = \pm 2^n$. This proves that β_1 is a non-zero linear structure.
(ii) If \(n \) is odd, from (5) we conclude that \((\xi_i, \ell_i)^2 = 2^{n+1}, 0, i = 0, 1, \ldots, 2^n - 1 \), and hence by using Lemma 1, we have proved \(N_f = 2^{n-1} - 2^{\frac{1}{2}(n-1)} \). By using Lemma 6 we conclude that the algebraic degree of \(f \) is at most \(2^{\frac{1}{2}(n+1)} \).

(iii) If \(n \) is even, from (13), \((\xi_i, \ell_i)^2 = 2^{n+2}, 0, 2^n \). Since \#R > 1, \(f \) is not bent. Hence \((\xi_i, \ell_i)^2 = 2^n \) cannot hold for all \(i \) and hence there exists a number \(i_0, 0 \leq i_0 \leq 2^n - 1 \), such that \((\xi_i, \ell_i)^2 = 2^{n+2} \). By using Lemma 1, we have proved \(N_f = 2^{n-1} - 2^{\frac{1}{2}n} \), if \(n \) is even. By using Lemma 6 we conclude that the algebraic degree of \(f \) is at most \(2^{\frac{1}{2}n+1} \).

Example 2. Let \(n \) be a positive odd number and \(f(x_1, \ldots, x_n) \) be the same with that in Example 1. Let \(W \) be an \((n-1)\)-dimensional linear subspace of \(V_n \), composed of all the vectors in \(V_n \), that can be expressed in the form \((a_1, \ldots, a_{n-1}, 0)\), where each \(a_j \in GF(2) \). It is easy to see \(\alpha^* = (1, 0, \ldots, 0) \in V_n \) is a non-zero linear structure of \(f \) and \(R \cap W = \{0, \alpha^*\} \). Due to (ii) of Theorem 8, \(N_f = 2^{n-1} - 2^{\frac{1}{2}(n-1)} \).

Let \(k \) be a positive even number with \(k \geq 4 \) and \(h(x_1, \ldots, x_k) = x_1 \oplus x_2 \oplus q(x_3, \ldots, x_k) \) where \(q \) is a bent function on \(V_{k-2} \). Let \(U \) be an \((n-1)\)-dimensional linear subspace of \(V_n \), composed of all the vectors in \(V_n \), that can be expressed in the form \((0, a_2, \ldots, a_k)\), where each \(a_j \in GF(2) \). It is easy to see \(\alpha^* = (0, 1, 0, \ldots, 0) \) is a non-zero linear structures of \(h \) and \(R \cap U = \{0, \alpha^*\} \). Due to (iii) of Theorem 8, \(N_h = 2^{k-1} - 2^{\frac{1}{2}k} \).

It is interesting that by using Theorem 8, we have determined \(N_0 \) only from the condition \#(\(R \cap U \)) = 2 for an \((n-1)\)-dimensional linear subspace \(U \) although we do not search other vectors in \(R \).

Finally, we consider the case when \#(\(R \cap W \)) = 3.

Theorem 9. Let \(f \) be a function on \(V_n \). If there exists a \((n-1)\)-dimensional linear subspace \(W \) satisfying \(R \cap W = \{0, \beta_1, \beta_2\} \), then the following statements hold:

(i) \(\Delta(\beta_j) = \pm 2^{n-1}, j = 1, 2 \),

(ii) if \(n \) is odd, then the nonlinearity of \(f \) satisfies \(N_f = 2^{n-1} - 2^{\frac{1}{2}(n-1)} \) and the algebraic degree of \(f \) is at most \(2^{\frac{1}{2}(n+1)} \),

(iii) if \(n \) is even, then \(N_f = 2^{n-1} - 2^{\frac{1}{2}n} \) and the algebraic degree of \(f \) is at most \(2^{\frac{1}{2}n+1} \).

Proof. Since any two non-zero vectors are linearly independent, we can keep the deduction in the proof of Theorem 3 until inequality (12) where we need the condition \(k \geq 3 \).

Recall the proof of Theorem 3, (9) can be specialized as \(\Delta(\beta_j) = \pm 2^{n-1}, \pm 2^{n-1}, j = 1, 2 \).

On the other hand, (10), (11) and (12) can be rewritten as \(\Delta(\beta_1), \Delta(\beta_2) = 2^{n-1}(b_1, b_2) \) where each \(b_j = \pm 1, \pm 2 \), \((p_{1s}, p_{2s}) = (b_1, b_2) \), and

\[
p_{1s} \Delta(\beta_1) + p_{2s} \Delta(\beta_2) = (|b_1| + |b_2|)2^{n-1} \tag{16}
\]
respectively. It is easy to prove $h_1, h_2 = \pm 1$. Otherwise, for example, $h_1 = \pm 2$,
from (16), $p_1, \Delta(h_1) + p_2, \Delta(h_2) \geq 3 - 2^{n-1}$. This contradicts (6). Since $h_1, h_2 = \pm 1$,
$\Delta(h_1), \Delta(h_2) = \pm 2^{n-1}$. This proves (i).

The rest proof is the same with the proof of Theorem 8.

\[\square \]

Example 3. Let n be a positive odd number with $n \geq 7$, $h(x_1, x_2, x_3, x_4, x_5) = (x_1 \oplus x_2 \oplus x_3) x_4 x_5 \oplus x_1 x_5 \oplus x_2 x_4 \oplus x_1 \oplus x_2 \oplus x_3$ and $g(x_6, \ldots, x_n)$ be a bent function on V_{n-5}. Set $f(x_1, \ldots, x_n) = h(x_1, x_2, x_3, x_4, x_5) \oplus g(x_6, \ldots, x_n)$.

Let W be an $(n-1)$-dimensional linear subspace of V_n, composed of all the vectors in V_n, that can be expressed in the form $(0, a_2, \ldots, a_n)$, where each $a_j \in GF(2)$. Write $a_1 = (0, 0, 1, 0, \ldots, 0), a_2 = (0, 1, 0, \ldots, 0) \in V_n$. It is easy to verify $a_1, a_2 \in \mathbb{F}$ and $\mathbb{F} \cap W = \{0, a_1, a_2\}$. Due to (i) and (ii) of Theorem 9, we conclude $\Delta(a_1) = \pm 2^{n-1}, \Delta(a_2) = \pm 2^{n-1}$ and $\delta_j = 2^{n-1} - 2^{j(n-1)}$.

We notice that by using Theorem 9, we have determined $\delta_j, \Delta(a_1)$ and $\Delta(a_2)$ only from the information about $\#(\mathbb{F} \cap W)$ for an $(n-1)$-dimensional linear subspace W although we do not search other the vectors in \mathbb{F}.

We can also find an example corresponding to (iii) of Theorem 9. All Theorems 7, 8 and 9 and Examples 1, 2 and 3 show that we can determine the nonlinearity of a function only from some information about $\#(\mathbb{F} \cap W)$, where W is an $(n-1)$-dimensional linear subspace. It is interesting that [7] has proved that there exists no a function with $\#(\mathbb{F}) = 3$ while Example 3 gives a function satisfying $\#(\mathbb{F} \cap W) = 3$ for an $(n-1)$-dimensional linear subspace W.

7 Conclusions

The strong linear dependence is an improvement on a previously known result. The unbiased distribution of non-propagation vectors is valid for most functions. These results provide more information on the non-propagative vectors in any $(n-1)$-dimensional linear subspace of V_n, and hence they are helpful for designing cryptographic functions.

8 Acknowledgement

The second author was supported by a Queen Elizabeth II Fellowship (227 23 1002).

References

